## $10^{\text {th }}$ JLPC Workshop

## PaMPA :

 Parallel MeshPartitioning and Adaptation

## Contents

Common needs of solvers regarding meshes
What is PaMPA
Some results

Work in progress

Upcoming features

## Common needs of solvers regarding meshes

- Handling of mesh structures
- Distribution of meshes across the processors of a parallel architecture
- Handling of load balance
- Data exchange across neighboring entities
- Iteration on mesh entities
- Entities of any kind: e.g. elements, faces, edges, nodes, ...
- Entity sub-classes: e.g. regular or boundary faces, ...
- Inner or frontier entities with respect to neighboring processors
- Maximization of cache effects thanks to proper data reordering
- Dynamic modification of mesh structure
- Dynamic redistribution
- Adaptive remeshing


## Contents

Common needs of solvers regarding meshes
What is PaMPA
Some results

Work in progress

Upcoming features

## What is PaMPA

- PaMPA: "Parallel Mesh Partitioning and Adaptation"
- Middleware library managing the parallel repartitioning and remeshing of unstructured meshes modeled as interconnected valuated entities
- The user can focus on his/her "core business":
- Solver
- Sequential remesher
- Coupling with MMG3D provided for tetrahedra



## Features of version 1.0

- Overlap greater than 1
- Point-to-point or collective communications
- Parallel I/O
- Parallel partitioning
- Parallel remeshing based on sequential remesher


## Renumbering

- Execution speed greatly benefits from memory locality
- Algorithms must take into account memory hierarchy
- Adjacency lists already take advantage of L1 locality
- L2 locality must be increased
- regards ordering the entities themselves
- Principle : over-decompose mesh into subdomains of about 500 elements (so
 as to fit in L2 cache)
- renumbering elements inside each subdomain
- order other entities according to element numbers


## Parallel remeshing (1/2)

- Parallel remeshing based on user criteria:
- Smallest and largest edge lengths
- Maximum quality of wrong element
- Multi-pass method:
- Before each pass, mesh is checked according to user criteria
- Each element which not verify criteria is tagged to be remeshed
- Each pass uses iterative method to remove tag on all elements
- Stopped when number of elements to be remeshed divided by number of previous pass is less than a ratio defined by user


## Parallel remeshing ( $1 / 7$ )



Parallel remeshing ( $1 / 7$ )


Inría

## Parallel remeshing (1/7)


invía

## Parallel remeshing (1/7)

## 3 <br> Extracting



## Parallel remeshing (1/7)



## Parallel remeshing (1/7)

## 5 Reintegrating



Parallel remeshing (1/7)


## Contents

Common needs of solvers regarding meshes
What is PaMPA
Some results

Work in progress

Upcoming features

Ćnría

## Some results (1/4)



| Before remeshing |  |
| :---: | :--- |
| Number of elements | 2423029 |
| Number of nodes | 1071626 |

## Some results (2/4)

|  | MMG3D | PaMPA-MMG3D |
| :---: | :---: | :---: |
| on 1 processor | on 24 processors |  |
| Processor frequency $(\mathrm{GHz})$ | 2,40 | 3,06 |
| Used memory $(\mathrm{kb})$ | 27588940 | 51116044 |
| Elapsed time | 17 h 15 m 12 s | 00 h 21 m 14 s |
| Number of elements | 108126515 | 115802876 |
| Smallest edge length | 0.1470 | 0.1395 |
| Largest edge length | 6.3309 | 11.2415 |
| Worst element quality | 294.2669 | 294.2669 |
| Element quality between 1 and 2 | $99.65 \%$ | $99.38 \%$ |
| Edge length between 0.71 and 1.41 | $97.25 \%$ | $97.65 \%$ |

## Some results (3/4)

|  | PaMPA-MMG3D <br> isotropic tetrahedral mesh <br> on 120 processors |
| :---: | :---: |
| Elapsed time | 00 h 34 m 54 s |
| Number of elements | 318027812 |
| Smallest edge length | 0.2862 |
| Largest edge length | 6.2161 |
| Worst element quality | 235.6651 |
| Element quality between 1 and 2 | $99.58 \%$ |
| Edge length between 0.71 and 1.41 | $97.91 \%$ |

## Some results (4/4)

|  | PaMPA-MMG3D <br> anisotropic tetrahedral mesh <br> on 6 processors |
| :---: | :---: |
| Elapsed time | $00 \mathrm{~h} 08 \mathrm{m07s}$ |
| Number of elements | 11687798 |
| Smallest edge length | 0.1265 |
| Largest edge length | 11.0146 |
| Worst element quality | 45.1691 |
| Element quality between 1 and 2 | $98.21 \%$ |
| Edge length between 0.71 and 1.41 | $93.15 \%$ |

## Contents

Common needs of solvers regarding meshes
What is PaMPA
Some results
Work in progress

Upcoming features

## Work in progress

- Release of version 1.0
- Available at the end of September from Inria Gforge
- Licensed under GPL
- Multigrid meshes


## Contents

Common needs of solvers regarding meshes
What is PaMPA
Some results

Work in progress
Upcoming features

## Upcoming features

- Code industrialisation
- Mesh definition with a grammar
- Face orientation and displacement
- Unbreakable relations
- Partitioner will not cut these edges
- E.g. to implement DG methods
- Periodic meshes
- Parallel I/O with HDF5
- Parallel mesh adaptation scalability


## THANK You

## Definitions

- Mesh:
- Element
- Node
- Edge
- Internal
- Boundary
- PaMPA Mesh:
- Vertex
- Relation
- Entity
- Sub-entity
- Enriched graph

Top-level mesh entity
May bear some data (volume, pressure, etc.)


## Definitions

- Mesh:

May bear some data (geometry, etc.)

- Element
- Node
- Edge
- Internal
- Boundary
- PaMPA Mesh:
- Vertex
- Relation
- Entity
- Sub-entity
- Enriched graph



## Definitions

May bear some data (flux, etc.)

- Mesh:
- Element
- Node
- Edge
- Internal
- Boundary
- PaMPA Mesh:
- Vertex
- Relation
- Entity
- Sub-entity

- Enriched graph


## Definitions

## Regular mesh edge

- Mesh:
- Element
- Node
- Edge
- Internal
- Boundary
- PaMPA Mesh:
- Vertex
- Relation
- Entity
- Sub-entity



## Definitions

Boundary mesh edge

- Mesh:
- Element
- Node
- Edge
- Internal
- Boundary
- PaMPA Mesh:
- Vertex
- Relation
- Entity
- Sub-entity

- Enriched graph


## Definitions

What all entities are in fact. . .

- Mesh:
- Element
- Node
- Edge
- Internal
- Boundary
- PaMPA Mesh:
- Vertex
- Relation
- Entity
- Sub-entity
- Enriched graph



## Definitions

- Mesh:

Subset of edges between vertices belonging to prescribed entity types

- Element
- Node
- Edge
- Internal
- Boundary
- PaMPA Mesh:
- Vertex
- Relation
- Entity
- Sub-entity
- Enriched graph



## Definitions

Subset of vertices bearing the same data

- Mesh:
- Element
- Node
- Edge
- Internal
- Boundary
- PaMPA Mesh:
- Vertex
- Relation
- Entity
- Sub-entity
- Enriched graph



## Definitions

- Mesh:

Subset of entity vertices that may bear additional specific data

- Element
- Node
- Edge
- Internal
- Boundary
- PaMPA Mesh:
- Vertex
- Relation
- Entity
- Sub-entity
- Enriched graph



## Definitions

Whole set of vertices and relations Every vertex belongs to one and only one entity (and sub-entity)


## Global vue

- All vertices have a global unique number



## Local vision of process 0

- All local and ghost vertices have a compact local index
- Per-entity numbering

```
vertlocnbr 3
vertgstnbr 6
edgelocnbr 7
ventloctab [\begin{array}{lll|r}{\hline3}&{3}&{1}\\{\hline}\end{array}\mathbf{N}
vendloctab _
```



## Renumbering



## Definition

- Solving 2D Poisson equation:
- $\Delta u(x, y)=f(x, y)$
- $g(x, y)=u(x, y)$ on the boundary $\Gamma$
- Test case:
- $f(x, y)=-2 * \cos (x) * \cos (y)$ in the domain $\Omega$
- $g(x, y)=\cos (x) * \cos (y)$ on the boundary $\Gamma$

- $u(x, y)=\cos (x) * \cos (y)$


## Mesh properties

- Entities:
- Elements
- Nodes
- Boundary edges
- Relations:
- Element to element
- Element to node
- Element to boundary edge
- Node to node
- Overlap of size 1
- Values:
- Coordinates and solution on nodes
- Type on boundary edges
- Area, volume on elements


## All steps

! On all processors
CALL DistributedMesh() ! Build PaMPA distributed mesh:
1- Read in parallel a centralized mesh 2- Call PaMPA mesh partioner
3- Redistribute distribute mesh
CALL ElementVolume ()
CALL InitializeMatrixCSR()
! Solution computation

CALL InitSol()
CALL FillMatrix()
CALL SolveSystem()
CALL WriteDistributedMeshAndSolFiles()

UIUC - F. Pellegrini \& C. Lachat \& C. Dobrzynski - PaMPA Novemver 25, 2013- 26

## FillMatrix

```
RHS = 0.
CALL PAMPAF_dmeshltInitStart (dm, ENTITY_ELEM, PAMPAF_VERT_ANY, it_vrt , ierr)
CALL PAMPAF_dmeshltInit (dm, ENTITY_ELEM, ENTITY_NODE, it_ngb, ierr)
DO WHILE (PAMPAF_itHasMore (it_vrt))
    jt = PAMPAF_itCurEnttVertNum (it_vrt)
    Volt = VolEI (jt)
    ngb}=
    CALL PAMPAF_itStart (it_ngb, jt, ierr)
    DO WHILE (PAMPAF_itHasMore (it_ngb))
        ngb}=ngb + 1
        is = PAMPAF_itCurEnttVertNum (it_ngb)
        NuElemt(ngb) = is
        CoorElemt(:,ngb) = Coor(:,is)
        PAMPAF_itNext (it_ngb)
    END DO
    CALL GradPhi (CoorElemt(:,1), CoorElemt(:,2), CoorElemt(:,3), GrdPhi)
    DO i = 1, Nsmplx
        is = NuElemt(i)
        DO j = 1, Nsmplx
        js = NuElemt(j )
        JJac = Volt * Sum (GrdPhi(:,i) * GrdPhi(:,j))
        CALL assembly_addCSR (JJac, is,js)
        END DO ! loop on j
        RHS(is) = RHS(is) - Volt * SourceTerm (Coor(1,is), Coor(2,is)) / Nsmplx
    END DO ! loop on i
    PAMPAF_itNext (it_vrt)
END DO
```


## Solve system: Jacobi (1/2)

```
UaPrec = 0. ! Suppose A = L + D + U, system to solve : A x = b
CALL PAMPAF_dmeshltInit(dm, ENTITY_NODE, ENTITY_NODE, it_ngb, ierr)
DO irelax = 1, Nrelax
    res = 0.
    CALL PAMPAF_dmeshItInitStart(dm, ENTITY_NODE, PAMPAF_VERT_BOUNDARY, it_vrt, ierr)
    DO WHILE (PAMPAF_itHasMore(it_vrt))
    is = PAMPAF_itCurEnttVertNum(it_vrt)
    CALL PAMPAF_dmeshMatLineData(dm, ENTITY_NODE, is, I1, IIFin, ierr)
    CALL PAMPAF_itStart( it_ngb, is, ierr)
    res0 = RHS(is) ! res0 = b
    iv = i1
    DO WHILE (PAMPAF_itHasMore(it_ngb))
        js = PAMPAF_itCurEnttVertNum(it_ngb)
        PAMPAF_itNext(it_ngb)
        res0 = res0 - MatCSR%Vals(iv) * UaPrec(js) !res0 = b - (L +U) x^n
        iv = iv + 1
    END DO
    Ua(is) = res0 / MatCSR%Diag(is) ! < ^ n+1=(b-(L+U) x^n)/D
    PAMPAF_itNext(it_vrt)
END DO
```

CALL PAMPAF_dmeshHaloValueAsync(dm, ENTITY_NODE, PAMPA_TAG_SOL, req, ierr)

## Solve system: Jacobi (2/2)

CALL PAMPAF_dmeshltlnitStart (dm, ENTITY_NODE, PAMPAF_VERT_INTERNAL, it_vrt, ierr) DO WHILE (PAMPAF_itHasMore (it_vrt))
is = PAMPAF_itCurEnttVertNum (it_vrt)
CALL PAMPAF_dmeshMatLineData (dm, ENTITY_NODE, is, I1, I1Fin, ierr)
CALL PAMPAF_itStart ( it_ngb, is, ierr)
res0 $=$ RHS (is) ! res0 $=b$
$i v=i 1$
DO WHILE (PAMPAF_itHasMore (it_ngb))
$\mathrm{j} s=$ PAMPAF_itCurEnttVertNum (it_ngb)
PAMPAF_itNext(it_ngb)
res0 $=$ res $0-\mathrm{MatCSR} \%$ Vals (iv) * UaPrec (js) ! resO $=b-(L+U) x^{\wedge} n$
$i v=i v+1$
END DO
Ua(is) $=$ res0 / MatCSR\%Diag(is) $\quad!x^{\wedge} n+1=\left(b-(L+U) x^{\wedge} n\right) / D$
PAMPAF_itNext(it_vrt)
END DO
CALL PAMPAF_dmeshHaloWait(req, ierr)

UaPrec $=$ Ua
END DO ! end loop on irelax

