
Autor: 11/27/13

On the feasibility of message logging in hybrid
hierarchical FT protocols

Tatiana V. Martsinkevich, Franck Cappello

2

What FT protocols have a
future?

● Currently used: app level coordinated
checkpointing
– Everyone access PFS to get the checkpoint
– Everyone has to re-execute → waste of energy

● On large scale may be not feasible

Can we do better?

3

Hybrid FT protocols(1)
● Divide processes into clusters

– Coordinated checkpointing inside the cluster
– Message logging for inter-cluster communication

● Advantages
– Restart only part of execution → less load on PFS & save energy

– Can (potencially) use idle PEs for something else

p0 p1

p2 p3

p4 p5

p6 p7

4

Hybrid FT protocols(2)
● Existing hybrid FT protocols: SPBC* etc.

– Low overhead in failure-free execution
– Recovery as fast as failure-free or even faster

● Message logging in hybrid protocols
– We only have so much memory to use!

(*) “SPBC: Leveraging the Characteristics of MPI HPC Applications for Scalable Checkpointing”.
T.Ropars, T.Martsinkevich, A. Guermouche, A. Schiper, F.Cappello ACM/IEEE SC13

➔ Top 10 supercomputers from the top500 list have in
average 1GB of RAM per core

5

Memory requirenments of scientific
applications

➔ Tendency:
● ~300MB per

core
● Doubling # of

procs doesn't
halve memory
footprint

* Milan Pavlovic et al. Can Manycores Support the Memory Requirements of Scientific Applications?
ISCA'10 Proceedings of the 2010 international conference on Computer Architecture

6

Approaches to limited memory
● Change checkpointing frequency in cluster

– Logs are flushed with the chp()
● Flush part of logs to dedicated logger nodes
● Change clustering

– Less clusters but bigger size → less to log

7

Approaches to limited memory
● Change checkpointing frequency in cluster

– Logs are flushed with the chp()
● Flush part of logs to dedicated logger nodes
● Change clustering

– Less clusters but bigger size → less to log

8

Case study
● Applications:

– POP2: ocean component of CESM
– CM1: model to study atmospheric phenomena

(thunderstorms)
● 256 PEs (32 nodes)
● Platform: GRID5000

– Node x 2 Intel Xeon CPUs (2.27GHz) x 4 cores, 16GB
RAM

– Infiniband-40G

9

Dedicated loggers
● 4 nodes, each with

– 16GB of RAM
– 8 logger MPI ranks

● If compute rank runs out of memory
– Flush part of log to logger's memory

● Free enough memory to run for another 10sec with
current log growth rate

…

compute nodes

logger nodes

10

Case study 1: POP2
 maximum memory footprint

● Simulate 10 days
(~5 mins of
execution)

● Max memory:
~900MB

● Avg memory:
~440MB

(High memory utilization may be due to the initialization stage)

11

POP2: total log size
● 8 clusters (32 PEs per

cluster)
● Average log per rank:

109MB
● Max log per rank:

430MB
● Min log per rank: 0MB

12

Memory allocated for logging:
no limit

Rank 0
Total logged payload: 430MB

Rank 56
Total logged payload: 182MB

Note: besides logging the message payload, need memory to log determinants
and for other bookkeeping stuff

13

Memory allocated for logging:
Max 200MB

Rank 0

Total logged payload: 430MB

Rank 56

Total logged payload: 182MB

14

Memory limit vs Execution
time

Mem_limit (MB) Execution time
(sec)

Total dumped (MB)
(% of total logged)

ranks who
dumped

100 255 9398 (33%) 154

200 226 1665 (6%) 31

300 224 139 (0.05%) 2

400 222 30 (0.01%) 1

No limit 222 - -

Dumping ~30% of logs to loggers' memory delayed execution by
~15%

15

Case study 2
CM1: memory footprint

● Simulate 6 mins
(~4 mins of
execution)

● Max memory:
~100MB

● Avg memory:
~99.9MB

16

CM1: total log size

● 9 clusters (16-32 PEs per
cluster)

● Average log per rank:
394MB

● Max log per rank:
1470MB

● Min log per rank: 0MB

17

Message logging vs
Checkpointing

Mem_limit
(MB)

Total dumped
(MB)

 (%of total
logged)

240 64700 (64%)

360 46580 (46%)

480 28460 (28%)

720 15910 (15%)

Restart file size: ~6MB
Total written to PFS: ~1536MB

18

Conclusions
● Caught between two fires:

– App with small memory footprint but big log growth rate
– App with large footprint but reasonable log growth rate (if

ignore the init stage)
● Keep hope alive:

 sometimes still do better

than just chp() frequently

19

What can be done
● Intensive communication during initialization

stage
➔ Chp() after the initialization

● Find optimal (chp period, memory limit)
● Change clustering ?

– Graph partitioning algorithm that minimizes
maximum log size (per rank) ?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

