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Coarse space preconditioners Numerical results Conclusion

A short introduction to DDM

Consider the linear system: Au = f ∈ Rn.

Given a decomposition of J1; nK, (N1,N2), define:
• the restriction operator Ri from J1; nK into Ni ,
• RT

i as the extension by 0 from Ni into J1; nK.
Then solve concurrently:

um+1
1 = um

1 + A−1
11 R1(f − Aum) um+1

2 = um
2 + A−1

22 R2(f − Aum)

where ui = Riu and Aij := RiART
j .

Ω
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A short introduction II

We have effectively divided, but we have yet to conquer.

Duplicated unknowns coupled via a partition of unity:

I =
N∑

i=1
RT

i DiRi .

Then, um+1 =
N∑

i=1
RT

i Dium+1
i . M−1 =

N∑
i=1

RT
i DiA−1

ii Ri .

1
2

1

1
2 1
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Contributions and goals

Based on algebraic results with the p. of u., we propose:
1 a reformulation of the global matrix-vector product
eliminating the need of a global ordering,

2 a construction of a so-called “coarse operator” to enhance
a simple preconditioner.

We are interested in the solution of various SPD systems,
independently of:

• the discretization order,
• the contrast in the coefficients,
• the number of subdomains.
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Using the overlap to its fullest extent

DDM methods are seldom used as standalone solvers.

Krylov methods and overlapping Schwarz methods

Ri

Au =⇒ efficient global matrix-vector product

=
∑
j∈Oi

AijDjRju

=
∑
j∈Oi

RiRT
j AjjDjRju. local unknowns on Ωj

• no need for the global matrix, only local to neighbors mappings.
↪→ explicit point-to-point communications via RiRT

j .
• reuse of the operators from the preconditioner, Aii .
Oi are the neighbors of Ωi , Oi = Oi ∪ {i}.
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Limitations of one-level methods

One-level methods don’t require exchange of global information.

This hampers numerical scalability of such preconditioners.
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Two-level preconditioners I

A common technique in the field of DDM, MG, deflation:

introduce an auxiliary “coarse” problem.

Let Z be a rectangular matrix. Define

E := ZTAZ .

Z has O(N) columns, hence E is much smaller than A.

Enrich the original preconditioner, e.g. additively

P−1 = M−1 + ZE−1ZT ,

c.f. (Tang et al. 2009).
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Two-level preconditioners II

The construction of Z and the assembly of E are challenging.

Let each domain compute concurrently νi vectors
{

Λij

}νi

j=1
.

Define local dense rectangular matrices:

Wi =
[
DiΛi1 DiΛi2 · · · DiΛiνi

]
.

Then, define the global deflation matrix as:

Z =
[
RT

1 W1 RT
2 W2 · · · RT

N WN
]
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Generalized eigenvalue problems

For theoretical justification of Z , see (Spillane et al. 2011).
Solved by ARPACK concurently:

AN
i Λj = λjDiRT

i ,0Ri ,0AN
i DiΛj

where
• AN

i is the local unassembled matrix,

• Ri ,0 is the restriction from Ωi to Ωi
⋂( ⋃

j∈Oi

Ωj

)
.
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Workflow during one coarse operator correction
How to compute ZE−1ZTu ∈ Rn ?

n

ZTu = × = m� n

(ZTAZ )−1ZTu = \ =

× =

= Z (ZTAZ )−1ZTu

operations & MPI_Gather + linear solve + MPI_Scatter & operations

Communication pattern =⇒ global reduction at the coarse level.
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Distribution of the coarse operator

How can one solve E−1z = c ∈ Rm ?

Some constraints:
1 E cannot be centralized on a single MPI process,
2 E cannot be distributed on all MPI processes,
3 the solution must be computed fast and reliably.

=⇒ use a direct solver with a distributed matrix on few
master processes (number chosen at runtime).
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Assembly for Schwarz methods
Recalling E = ZAZT , it can be proven that the block (i , j)

Eij = W T
i AijWj

= W T
i RiRT

j AjjWj

1 compute locally Ti = AiiWi (csrmm),
2 send to each neighbor, Sj = RjRT

i Ti ,
3 receive from each neighbor Uj = RiRT

j Tj ,
4 compute locally Ei ,i = W T

i Ti (gemm),
5 compute locally Ei ,j = W T

i Uj (gemm).

Note: • steps 2 and 3 overlap with step 4,
• if j 6∈ Oi , RiRT

j = 0.
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Example of heterogeneous coefficients

κ(x , y)

∇ · (κ∇u) = f
+ BC
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2D geometry
(E1,E2) = (200, 0.01) GPa

(ν1, ν2) = (0.25, 0.45)

∇ · σ = f
+ BC
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3D geometry
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Machine used for scaling runs

Curie Thin Nodes
• 5,040 compute nodes.
• 2 eight-core Intel Sandy Bridge@2.7 GHz per node.
• IB QDR full fat tree.
• 1.7 PFLOPs peak performance.
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Strong scaling (linear elasticity)
1 subdomain/MPI process, 2 OpenMP threads/MPI process.
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Weak scaling (scalar diffusion equation)
1 subdomain/MPI process, 2 OpenMP threads/MPI process.
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Weak scaling (scalar diffusion equation)
1 subdomain/MPI process, 2 OpenMP threads/MPI process.
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Distributed global matrix

Local to global mapping =⇒ distribution of the global matrix
à la PETSc (split row-wise).

Comparing performance of setup and solution phases between
our solver against purely algebraic (+ near null space) solvers:

• GASM – one-level domain decomposition method (ANL),
• Hypre BoomerAMG – algebraic multigrid (LLNL),
• GAMG – algebraic multrigrid (ANL/LBL).
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Solution of a linear system I
Homogeneous 3D Poisson equation discretized by P1 FE solved
on 2,048 MPI processes, 111M d.o.f.
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Solution of a linear system II
Heterogeneous 3D linear elasticity equation discretized by P2 FE
solved on 2,048 MPI processes, 127M d.o.f.
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Final words

Limitations:
• scaling of the coarse operator in 3D beyond 10k subdomains,
• deflation vectors need elementary matrices to be computed.

Summary:
• scalable framework for building two-level preconditioners
for both Schwarz or substructuring methods (FETI-1),

• easily interfacable (FEM, FVM) without a global ordering.
Outlooks:

• adaptive (re)construction/recycling of the coarse operator,
• nonlinear and saddle point problems.

Thank you !
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Solvers parameters

• Schwarz GenEO: νi = 20, overlap = 1 (geometric).
• PETSc GASM: overlap = 10 (algebraic).
• Hyper BoomerAMG: HMIS coarsening, extended
“classical” interpolation, no CF-relaxation, 2 levels of
aggressive coarsening.

• PETSc GAMG: 1 smoothing step, -mg_levels_ksp_type
richardson -mg_levels_pc_type sor.

OpenMPI bindings for hybrid runs:
--bind-to-socket --bycore.
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Distribution of the coarse operator

4

8

12

Uniform distribution

2

5

8

00

Non-uniform distribution

Distribution of E when built with N = 16 using 4 masters. On the
right, the number of values per master is roughly the same if the

values below the diagonal are dropped (symmetric coarse operator).
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Timings for assembling the coarse operator

3D

N P dim(E) |Oi| (average) Memory cost of “E−1” Time

256 4 5120 11.5 38 MB 2.78 s
512 6 10240 12.4 78 MB 3.35 s
1024 8 8 20480 22528 13.0 12.0 156 MB 93 MB 4.42 s 11.25 s
2048 12 12 40960 40960 13.8 12.9 332 MB 138 MB 6.91 s 5.68 s
4096 18 22 73728 73728 14.2 13.7 434 MB 172 MB 10.75 s 8.04 s
8192 64 48 131072 131072 14.7 14.6 420 MB 241 MB 19.92 s 17.30 s

2D

N P dim(E) |Oi| (average) Memory cost of “E−1” Time

256 2 5376 5.5 21 MB 9.39 s
512 4 10240 5.6 32 MB 9.96 s
1024 10 8 20480 24576 5.7 5.5 65 MB 57 MB 9.92 s 10.14 s
2048 14 12 38912 40960 5.8 5.7 94 MB 83 MB 10.05 s 6.20 s
4096 22 18 81920 73728 5.9 5.8 99 MB 73 MB 10.87 s 5.10 s
8192 36 36 163840 122880 5.9 5.8 152 MB 118 MB 13.27 s 6.96 s
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Strong scaling (linear elasticity)

N Factorization Deflation Solution #it. Total #d.o.f.

3D

1 024 177.86 s 264.03 s 77.41 s 28 530.56 s

293.98 · 106
2 048 62.69 s 97.29 s 20.39 s 23 186.04 s
4 096 19.64 s 35.70 s 9.73 s 20 73.12 s
8 192 6.33 s 22.08 s 6.05 s 27 51.76 s

2D

1 024 37.01 s 131.76 s 34.29 s 28 213.20 s

2.14 · 109
2 048 17.55 s 53.83 s 17.52 s 28 95.10 s
4 096 6.90 s 27.07 s 8.64 s 23 47.71 s
8 192 2.01 s 20.78 s 4.79 s 23 34.54 s
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Weak scaling (scalar diffusion equation)

N Factorization Deflation Solution #it. Total #d.o.f.

3D

256 64.24 s 117.74 s 15.81 s 13 200.57 s 74.62 · 106

512 63.97 s 112.17 s 19.93 s 18 199.41 s 144.70 · 106

1 024 63.22 s 118.58 s 16.18 s 14 202.40 s 288.80 · 106

2 048 59.43 s 117.59 s 21.34 s 17 205.26 s 578.01 · 106

4 096 58.14 s 110.68 s 27.89 s 20 207.47 s 1.15 · 109

8 192 54.96 s 116.64 s 23.64 s 17 215.15 s 2.31 · 109

2D

256 29.40 s 111.35 s 25.71 s 29 175.85 s 695.96 · 106

512 29.60 s 111.52 s 27.99 s 28 179.07 s 1.39 · 109

1 024 29.43 s 112.18 s 33.63 s 28 185.16 s 2.79 · 109

2 048 29.18 s 112.23 s 33.74 s 28 185.20 s 5.58 · 109

4 096 29.80 s 113.69 s 31.02 s 26 185.38 s 11.19 · 109

8 192 29.83 s 113.81 s 30.67 s 25 187.57 s 22.31 · 109
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