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Coarse space preconditioners
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A short introduction to DDM

Consider the linear system: Au=f € R".
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Coarse space preconditioners
©0000

A short introduction to DDM

Consider the linear system: Au=f € R".
Given a decomposition of [1; n], (N1, N>), define:

e the restriction operator R; from [1; n] into AV,
e R as the extension by 0 from A into [1; n].

Q
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Coarse space preconditioners
©0000

A short introduction to DDM

Consider the linear system: Au=f € R".

Given a decomposition of [1; n], (N7, N>), define:
e the restriction operator R; from [1; n] into AV,
e R as the extension by 0 from A into [1; n].

Then solve concurrently:

Uin+1 — Ul + Al]_ R]_(f AU ) Uén+l — U2 + A22 Rz(f Aum)

where u; = R;u and Afj = R"ARJ'T' Q

Q,
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Coarse space preconditioners
0®000

A short introduction Il

We have effectively divided, but we have yet to conquer.

Duplicated unknowns coupled via a partition of unity:

N
/ - Z RI-TD,'R,'.
i=1

Pierre Jolivet Scalable Domain Decomposition Preconditioners



Coarse space preconditioners
0®000

A short introduction Il

We have effectively divided, but we have yet to conquer.

Duplicated unknowns coupled via a partition of unity:

N
/ - Z RI-TD,'R,'.
i=1

N
Then, u™* =3 R D;u™™.

i=1
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Coarse space preconditioners
0®000

A short introduction Il

We have effectively divided, but we have yet to conquer.

Duplicated unknowns coupled via a partition of unity:

N 1
/ - Z RI-TD,'R,'. 1
i=1 2
N N
Then, u™* =3 R D;u™™. M~ =3 RTD,A;'R;.
i=1 i=1
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Coarse space preconditioners
00®00

Contributions and goals

Based on algebraic results with the p. of u., we propose:

©® a reformulation of the global matrix-vector product
eliminating the need of a global ordering,

® a construction of a so-called “coarse operator” to enhance
a simple preconditioner.

We are interested in the solution of various SPD systems,
independently of:

e the discretization order,
e the contrast in the coefficients,
e the number of subdomains.
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Coarse space preconditioners

[elele] lo]

Using the overlap to its fullest extent

DDM methods are seldom used as standalone solvers.

Krylov methods and overlapping Schwarz methods

Au = efficient global matrix-vector product
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Using the overlap to its fullest extent

DDM methods are seldom used as standalone solvers.

Krylov methods and overlapping Schwarz methods

N
Au=>" AR/D;Ru

j=1
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Using the overlap to its fullest extent

DDM methods are seldom used as standalone solvers.

Krylov methods and overlapping Schwarz methods

N
RiAu=> RARD;Ru
j=1
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[elele] lo]

Using the overlap to its fullest extent

DDM methods are seldom used as standalone solvers.

Krylov methods and overlapping Schwarz methods

N
RiAu=> RAR!DiRu=>" A;D;Ru

Jj=1 Jj€O;

O; are the neighbors of Q;, O; = O; U {i}.
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Coarse space preconditioners

[elele] lo]

Using the overlap to its fullest extent

DDM methods are seldom used as standalone solvers.

Krylov methods and overlapping Schwarz methods

N
RiAu=> RAR!DiRu=>" A;D;Ru
Jj=1 Jj€O;
=S Z R;RjTAijjRjU.\/v

j€o;

local unknowns on €;

e no need for the global matrix, only local to neighbors mappings.
— explicit point-to-point communications via R;R;.
e reuse of the operators from the preconditioner, A;.

O; are the neighbors of Q;, O; = O, U {i}.
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Coarse space preconditioners
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Limitations of one-level methods

One-level methods don't require exchange of global information.

This hampers numerical scalability of such preconditioners.
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Coarse space preconditioners
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Two-level preconditioners |

A common technique in the field of DDM, MG, deflation:

introduce an auxiliary “coarse” problem.

Let Z be a rectangular matrix. Define
E=ZTAZ.

Z has O(N) columns, hence E is much smaller than A.
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Two-level preconditioners |

A common technique in the field of DDM, MG, deflation:

introduce an auxiliary “coarse” problem.

Let Z be a rectangular matrix. Define
E=ZTAZ.

Z has O(N) columns, hence E is much smaller than A.
Enrich the original preconditioner, e.g. additively

Pl=mM1yZE1ZT,

c.f. (Tang et al. 2009).
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Coarse space preconditioners
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Two-level preconditioners Il

The construction of Z and the assembly of E are challenging.

. Vi

Let each domain compute concurrently v; vectors {/\,-j}, x
J:

Define local dense rectangular matrices:

W; =D\ Dify -+ Dily,].
Then, define the global deflation matrix as:

Z=[RIWi RIW, --- RIWy|
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Coarse space preconditioners
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Generalized eigenvalue problems

For theoretical justification of Z, see (Spillane et al. 2011).
Solved by ARPACK concurently:

AMN; = \;D;RT R, oAV DA,

where
o AN is the local unassembled matrix,

e Ry is the restriction from Q; to Q; ) ( U QJ->.

JeO;
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Coarse space preconditioners
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Workflow during one coarse operator correction

How to compute ZE*ZTu e R" ?
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Coarse space preconditioners
[ Tole}

Workflow during one coarse operator correction

How to compute ZTuecR"?

xﬂmm

operations & MPI_Gather
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Coarse space preconditioners
[ Tole}

Workflow during one coarse operator correction

How to compute E'ZTueR"?

xﬂmm
" |

(ZTAZ)1ZTu = \ H = H

operations & MPI_Gather + linear solve
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Coarse space preconditioners
[ Tole}

Workflow during one coarse operator correction

How to compute ZE-1ZTu e R" ?

STy y ZWM,, XH:

(ZTAZ) 1ZTu = \ H = H — Z(ZTAZ) 127y

operations & MPI_Gather + linear solve + MPI_Scatter & operations
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Coarse space preconditioners
[ Tole}

Workflow during one coarse operator correction

How to compute ZE-1ZTu e R" ?

STy y ZWM,, XH:

(ZTAZ) 1ZTu = \ H = H — Z(ZTAZ) 127y

operations & MPI_Gather + linear solve + MPI_Scatter & operations

Communication pattern = global reduction at the coarse level.
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Workflow during one coarse operator correction

How to compute ZE-1ZTu e R" ?

(ZTAZ)1ZTu H = H
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Coarse space preconditioners
oeo

Distribution of the coarse operator

How can one solve E-1z=c e R™?

Some constraints:
©® E cannot be centralized on a single MPI process,
® E cannot be distributed on all MPI processes,
© the solution must be computed fast and reliably.
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Coarse space preconditioners
oeo

Distribution of the coarse operator

How can one solve E-1z=c e R™?

Some constraints:
©® E cannot be centralized on a single MPI process,
® E cannot be distributed on all MPI processes,
© the solution must be computed fast and reliably.

—> use a direct solver with a distributed matrix on few
master processes (number chosen at runtime).
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Coarse space preconditioners
ooe

Assembly for Schwarz methods

Recalling E = ZAZT, it can be proven that the block (i, )

Ey = W, AW,
= W RRT AW,

® compute locally T; = A; W, (csrmm),
® send to each neighbor, S; = R;R/ T;,
© receive from each neighbor U; = RiR T},
© compute locally E;; = W' T; (gemm),
©® compute locally E;; = W, U; (gemm).

1

Note: e steps 2 and 3 overlap with step 4,
L4 If_j Q O,‘, R,‘I’?jT =0.
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Numerical results
0@00000

2D geometry

(El,E2) (200, 0.01) GPa

_ "1,v2) = (0.25,0.45)

Veo=f

_ + BC
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Numerical results
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3D geometry
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Numerical results
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Machine used for scaling runs

Curie Thin Nodes

5,040 compute nodes.

2 eight-core Intel Sandy Bridge@2.7 GHz per node.
IB QDR full fat tree.

1.7 PFLOPs peak performance.

PRACE
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Numerical results
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Strong scaling (linear elasticity)

1 subdomain/MPI process, 2 OpenMP threads/MPI process.
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Numerical results
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Strong scaling (linear elasticity)

1 subdomain/MPI process, 2 OpenMP threads/MPI process.
2.1B d.o.f. in 2D (P; FE)  300M d.o.f. in 3D (P, FE)
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Numerical results
000000

Weak scaling (scalar diffusion equation)

1 subdomain/MPI process, 2 OpenMP threads/MPI process.
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Numerical results
000000

Weak scaling (scalar diffusion equation)

1 subdomain/MPI process, 2 OpenMP threads/MPI process.
2.1M ot in 2D (P, FE) 280k 2% in 3D (PP, FE)
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Numerical results
®00

Distributed global matrix

distribution of the global matrix

Local to global mapping — a la PETSc (split row-wise).

Comparing performance of setup and solution phases between
our solver against purely algebraic (+ near null space) solvers:

e GASM - one-level domain decomposition method (ANL),
e Hypre BoomerAMG — algebraic multigrid (LLNL),
e GAMG - algebraic multrigrid (ANL/LBL).
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Numerical results
oceo

Solution of a linear system |

Homogeneous 3D Poisson equation discretized by P; FE solved
on 2,048 MPI processes, 111M d.o.f.
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Numerical results

ooe

Solution of a linear system |l

Heterogeneous 3D linear elasticity equation discretized by P, FE
solved on 2,048 MPI processes, 127M d.o.f.
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Conclusion

Final words

Limitations:
e scaling of the coarse operator in 3D beyond 10k subdomains,
e deflation vectors need elementary matrices to be computed.
Summary:

e scalable framework for building two-level preconditioners
for both Schwarz or substructuring methods (FETI-1),

e easily interfacable (FEM, FVM) without a global ordering.
Outlooks:

e adaptive (re)construction/recycling of the coarse operator,

e nonlinear and saddle point problems.
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Conclusion

Final words

Limitations:
scaling of the coarse operator in 3D beyond 10k subdomains,
deflation vectors need elementary matrices to be computed.
Summary:

scalable framework for building two-level preconditioners
for both Schwarz or substructuring methods (FETI-1),

easily interfacable (FEM, FVM) without a global ordering.
Outlooks:

adaptive (re)construction/recycling of the coarse operator,

nonlinear and saddle point problems.

Thank you !
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Backup slides

Solvers parameters

e Schwarz GenEO: v; = 20, overlap = 1 (geometric).
o PETSc GASM: overlap = 10 (algebraic).

e Hyper BoomerAMG: HMIS coarsening, extended
“classical” interpolation, no CF-relaxation, 2 levels of
aggressive coarsening.

e PETSc GAMG: 1 smoothing step, -mg_levels_ksp_type
richardson -mg_levels_pc_type sor.

OpenMPI bindings for hybrid runs:
--bind-to-socket --bycore.
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Backup slides

Distribution of the coarse operator

Uniform distribution Non-uniform distribution

Distribution of E when built with N = 16 using 4 masters. On the
right, the number of values per master is roughly the same if the
values below the diagonal are dropped (symmetric coarse operator).
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Backup slides

Timings for assembling the coarse operator

3D
N P dim(E) |O4| (average) Memory cost of “E~1” Time
256 | 4 5120 11.5 38 MB 2.78s
512 6 10240 124 78 MB 3.35s8
1024 | 8 8 20480 22528 13.0 12.0 156 MB 93 MB 442s 11.25s

2048 | 12 12 40960 40960 13.8 129 332 MB 138 MB 6.91s  5.68s
4096 | 18 22 73728 73728 14.2 13.7 434 MB 172 MB 10.75s  8.04s
8192 | 64 48 131072 131072 14.7 14.6 420 MB 241 MB 19.92s  17.30s

2D
N P dim(E) |O4| (average) Memory cost of “E~1” Time
256 | 2 5376 5.5 21 MB 9.39s
512 | 4 10240 5.6 32 MB 9.96s
1024 | 10 8 20480 24576 5.7 5.5 65 MB 57 MB 9.92s 10.14s

2048 | 14 12 38912 40960 5.8 5.7 94 MB 83 MB 10.05s  6.20s
4096 | 22 18 81920 73728 5.9 5.8 99 MB 73 MB 10.87s  5.10s
8192 | 36 36 163840 122880 5.9 5.8 152 MB 118 MB 13.27s  6.96s
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Backup slides

Strong scaling (linear elasticity)

N Factorization Deflation Solution #it.  Total #d.o.f.

1024 177.86s 264.03s T7.4ls 28 530.56s

2048 62.69s 97.29s 20.39s 23 186.04s 6
3D 4096 19.64 s 35.70s 9.73s 20 73.12s 203.98 - 10

8192 6.33s 22.08s 6.05s 27 51.76s

1024 37.01s 131.76s 34.29s 28  213.20s

2048 1755 53.83s 17.52 28 95.10s 9
2D 4096 6.90s 27.07s 8.64s 23 47.71s 2.14-10

8192 2.01s 20.78s 4.79s 23 34.54s
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Backup slides

Weak scaling (scalar diffusion equation)

N Factorization Deflation  Solution  #it. Total #d.o.f.

256 64.24s 117.74s 15.81s 13 200.57s 74.62-10°

512 63.97s 112.17s 19.93s 18 199.41s 144.70 - 10°

3D 1024 63.22s 118.58 s 16.18s 14 202.40s 288.80-10°
2048 59.43s 117.59s 21.34s 17 205.26s 578.01- 109
4096 58.14s 110.68s 27.89s 20 207.47s  1.15-10°
8192 54.96s 116.64 s 23.64s 17 215.15s  2.31-10°

256 29.40s 111.35s 25.71s 29 175.85s 695.96 - 10°

512 29.60s 111.52s 27.99s 28 179.07s  1.39-10°

2D 1024 29.43s 112.18s 33.63s 28  185.16s  2.79-10°
2048 29.18s 112.23s 33.74s 28  185.20s  5.58-10°
4096 29.80s 113.69s 31.02s 26 185.38s 11.19-10°
8192 29.83s 113.81s 30.67s 25 187.57s 22.31-10°
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