Scalable Domain Decomposition Preconditioners For Heterogeneous Elliptic Problems

Pierre Jolivet, F. Hecht,
F. Nataf, C. Prud'homme
Laboratoire Jacques-Louis Lions
Laboratoire Jean Kuntzmann
INRIA Rocquencourt

10th Workshop of the INRIA-Illinois-ANL Joint Laboratory
November 26th, 2013

A short introduction to DDM

Consider the linear system: $A u=f \in \mathbb{R}^{n}$.

A short introduction to DDM

Consider the linear system: $A u=f \in \mathbb{R}^{n}$. Given a decomposition of $\llbracket 1 ; n \rrbracket,\left(\mathcal{N}_{1}, \mathcal{N}_{2}\right)$, define:

- the restriction operator R_{i} from $\llbracket 1 ; n \rrbracket$ into \mathcal{N}_{i},
- R_{i}^{T} as the extension by 0 from \mathcal{N}_{i} into $\llbracket 1 ; n \rrbracket$.

A short introduction to DDM

Consider the linear system: $A u=f \in \mathbb{R}^{n}$.
Given a decomposition of $\llbracket 1 ; n \rrbracket,\left(\mathcal{N}_{1}, \mathcal{N}_{2}\right)$, define:

- the restriction operator R_{i} from $\llbracket 1 ; n \rrbracket$ into \mathcal{N}_{i},
- R_{i}^{T} as the extension by 0 from \mathcal{N}_{i} into $\llbracket 1 ; n \rrbracket$.

Then solve concurrently:
$u_{1}^{m+1}=u_{1}^{m}+A_{11}^{-1} R_{1}\left(f-A u^{m}\right) \quad u_{2}^{m+1}=u_{2}^{m}+A_{22}^{-1} R_{2}\left(f-A u^{m}\right)$ where $u_{i}=R_{i} u$ and $A_{i j}:=R_{i} A R_{j}^{T}$.

A short introduction II

We have effectively divided, but we have yet to conquer.

Duplicated unknowns coupled via a partition of unity:

$$
I=\sum_{i=1}^{N} R_{i}^{T} D_{i} R_{i} .
$$

A short introduction II

We have effectively divided, but we have yet to conquer.

Duplicated unknowns coupled via a partition of unity:

$$
I=\sum_{i=1}^{N} R_{i}^{T} D_{i} R_{i} .
$$

Then, $u^{m+1}=\sum_{i=1}^{N} R_{i}^{T} D_{i} u_{i}^{m+1}$.

A short introduction ||

We have effectively divided, but we have yet to conquer.

Duplicated unknowns coupled via a partition of unity:

$$
I=\sum_{i=1}^{N} R_{i}^{T} D_{i} R_{i} .
$$

Then, $u^{m+1}=\sum_{i=1}^{N} R_{i}^{T} D_{i} u_{i}^{m+1}$.

$$
M^{-1}=\sum_{i=1}^{N} R_{i}^{T} D_{i} A_{i i}^{-1} R_{i} .
$$

Contributions and goals

Based on algebraic results with the p. of u., we propose:
(1) a reformulation of the global matrix-vector product eliminating the need of a global ordering,
(2) a construction of a so-called "coarse operator" to enhance a simple preconditioner.

We are interested in the solution of various SPD systems, independently of:

- the discretization order,
- the contrast in the coefficients,
- the number of subdomains.

Using the overlap to its fullest extent

DDM methods are seldom used as standalone solvers.
Krylov methods and overlapping Schwarz methods
$A u \Longrightarrow$ efficient global matrix-vector product

Using the overlap to its fullest extent

DDM methods are seldom used as standalone solvers.
Krylov methods and overlapping Schwarz methods

$$
A u=\sum_{j=1}^{N} \quad A R_{j}^{T} D_{j} R_{j} u
$$

Using the overlap to its fullest extent

DDM methods are seldom used as standalone solvers.
Krylov methods and overlapping Schwarz methods

$$
R_{i} A u=\sum_{j=1}^{N} R_{i} A R_{j}^{T} D_{j} R_{j} u
$$

Using the overlap to its fullest extent

DDM methods are seldom used as standalone solvers.
Krylov methods and overlapping Schwarz methods

$$
R_{i} A u=\sum_{j=1}^{N} R_{i} A R_{j}^{T} D_{j} R_{j} u=\sum_{j \in \overline{\mathcal{O}_{i}}} A_{i j} D_{j} R_{j} u
$$

\mathcal{O}_{i} are the neighbors of $\Omega_{i}, \overline{\mathcal{O}_{i}}=\mathcal{O}_{i} \cup\{i\}$.

Using the overlap to its fullest extent

DDM methods are seldom used as standalone solvers.
Krylov methods and overlapping Schwarz methods

$$
\begin{aligned}
R_{i} A u & =\sum_{j=1}^{N} R_{i} A R_{j}^{T} D_{j} R_{j} u=\sum_{j \in \overline{\mathcal{O}_{i}}} A_{i j} D_{j} R_{j} u \\
& =\sum_{j \in \overline{\mathcal{O}_{i}}} R_{i} R_{j}^{T} A_{j j} D_{j} R_{j} u . \text { local unknowns on } \Omega_{j}
\end{aligned}
$$

- no need for the global matrix, only local to neighbors mappings. \hookrightarrow explicit point-to-point communications via $R_{i} R_{j}^{T}$.
- reuse of the operators from the preconditioner, $A_{i i}$.
\mathcal{O}_{i} are the neighbors of $\Omega_{i}, \overline{\mathcal{O}_{i}}=\mathcal{O}_{i} \cup\{i\}$.

Limitations of one-level methods

One-level methods don't require exchange of global information.

This hampers numerical scalability of such preconditioners.

Two-level preconditioners I

A common technique in the field of DDM, MG, deflation: introduce an auxiliary "coarse" problem.

Let Z be a rectangular matrix. Define

$$
E:=Z^{\top} A Z .
$$

Z has $\mathcal{O}(N)$ columns, hence E is much smaller than A.

Two-level preconditioners I

A common technique in the field of DDM, MG, deflation: introduce an auxiliary "coarse" problem.

Let Z be a rectangular matrix. Define

$$
E:=Z^{\top} A Z .
$$

Z has $\mathcal{O}(N)$ columns, hence E is much smaller than A.
Enrich the original preconditioner, e.g. additively

$$
P^{-1}=M^{-1}+Z E^{-1} Z^{\top},
$$

c.f. (Tang et al. 2009).

Two-level preconditioners II

The construction of Z and the assembly of E are challenging. Let each domain compute concurrently ν_{i} vectors $\left\{\Lambda_{i j}\right\}_{j=1}^{\nu_{i}}$. Define local dense rectangular matrices:

$$
W_{i}=\left[\begin{array}{llll}
D_{i} \Lambda_{i_{1}} & D_{i} \Lambda_{i_{2}} & \cdots & D_{i} \Lambda_{i_{\nu_{i}}}
\end{array}\right] .
$$

Then, define the global deflation matrix as:

$$
Z=\left[\begin{array}{llll}
R_{1}^{T} W_{1} & R_{2}^{T} W_{2} & \cdots & R_{N}^{T} W_{N}
\end{array}\right]
$$

Generalized eigenvalue problems

For theoretical justification of Z, see (Spillane et al. 2011). Solved by ARPACK concurently:

$$
A_{i}^{N} \Lambda_{j}=\lambda_{j} D_{i} R_{i, 0}^{T} R_{i, 0} A_{i}^{N} D_{i} \Lambda_{j}
$$

where

- A_{i}^{N} is the local unassembled matrix,
- $R_{i, 0}$ is the restriction from Ω_{i} to $\Omega_{i} \bigcap\left(\bigcup_{j \in \mathcal{O}_{i}} \Omega_{j}\right)$.

Workflow during one coarse operator correction

How to compute $Z E^{-1} Z^{\top} u \in \mathbb{R}^{n}$?

Workflow during one coarse operator correction

How to compute $\quad Z^{\top} u \in \mathbb{R}^{n}$?

operations \& MPI_Gather

Workflow during one coarse operator correction

How to compute $E^{-1} Z^{\top} u \in \mathbb{R}^{n}$?

operations \& MPI_Gather + linear solve

Workflow during one coarse operator correction

How to compute $Z E^{-1} Z^{\top} u \in \mathbb{R}^{n}$?

operations \& MPI_Gather + linear solve + MPI_Scatter \& operations

Workflow during one coarse operator correction

How to compute $Z E^{-1} Z^{\top} u \in \mathbb{R}^{n}$?
operations \& MPI_Gather + linear solve + MPI_Scatter \& operations
Communication pattern \Longrightarrow global reduction at the coarse level.

Workflow during one coarse operator correction

How to compute $Z E^{-1} Z^{\top} u \in \mathbb{R}^{n}$?

operations \& MPI_Gather + linear Solve + MPI_Scatter \& operations
Communication pattern \Longrightarrow global reduction at the coarse level.

Distribution of the coarse operator

How can one solve $E^{-1} z=c \in \mathbb{R}^{m}$?
Some constraints:
(1) E cannot be centralized on a single MPI process,
(2) E cannot be distributed on all MPI processes,
(3) the solution must be computed fast and reliably.

Distribution of the coarse operator

How can one solve $E^{-1} z=c \in \mathbb{R}^{m}$?
Some constraints:
(1) E cannot be centralized on a single MPI process,
(2) E cannot be distributed on all MPI processes,
(3) the solution must be computed fast and reliably.
\Longrightarrow use a direct solver with a distributed matrix on few master processes (number chosen at runtime).

Assembly for Schwarz methods

Recalling $E=Z A Z^{\top}$, it can be proven that the block (i, j)

$$
\begin{aligned}
E_{i j} & =W_{i}^{\top} A_{i j} W_{j} \\
& =W_{i}^{\top} R_{i} R_{j}^{\top} A_{i j} W_{j}
\end{aligned}
$$

(1) compute locally $T_{i}=A_{i j} W_{i}$ (csrmm),
(2) send to each neighbor, $S_{j}=R_{j} R_{i}^{T} T_{i}$,
(3) receive from each neighbor $U_{j}=R_{i} R_{j}^{T} T_{j}$,
(4) compute locally $E_{i, i}=W_{i}^{\top} T_{i}$ (gemm),
© compute locally $E_{i, j}=W_{i}^{\top} U_{j}$ (gemm).
Note: - steps 2 and 3 overlap with step 4,

- if $j \notin \mathcal{O}_{i}, R_{i} R_{j}^{T}=0$.

Example of heterogeneous coefficients

$$
\nabla \cdot(\kappa \nabla u)=f
$$

$+B C$

2D geometry

3D geometry

Machine used for scaling runs

Curie Thin Nodes

- 5,040 compute nodes.
- 2 eight-core Intel Sandy Bridge@2.7 GHz per node.
- IB QDR full fat tree.
- 1.7 PFLOPs peak performance.

PRAGE

Strong scaling (linear elasticity)

1 subdomain/MPI process, 2 OpenMP threads/MPI process.

Strong scaling (linear elasticity)

1 subdomain/MPI process, 2 OpenMP threads/MPI process.

Factorization \square Deflation vectors \square Coarse operator \square Krylov method

Weak scaling (scalar diffusion equation)

1 subdomain/MPI process, 2 OpenMP threads/MPI process.

Weak scaling (scalar diffusion equation)

1 subdomain/MPI process, 2 OpenMP threads/MPI process.

\square Factorization \square Deflation vectors \square Coarse operator \square Krylov method

Distributed global matrix

Local to global mapping \Longrightarrow distribution of the global matrix à la PETSc (split row-wise).

Comparing performance of setup and solution phases between our solver against purely algebraic (+ near null space) solvers:

- GASM - one-level domain decomposition method (ANL),
- Hypre BoomerAMG - algebraic multigrid (LLNL),
- GAMG - algebraic multrigrid (ANL/LBL).

Solution of a linear system I

Homogeneous 3D Poisson equation discretized by $\mathbb{P}_{1} \mathrm{FE}$ solved on 2,048 MPI processes, 111M d.o.f.

Solution of a linear system II

Heterogeneous 3D linear elasticity equation discretized by $\mathbb{P}_{2} \mathrm{FE}$ solved on $2,048 \mathrm{MPI}$ processes, 127 M d.o.f.

Final words

Limitations:

- scaling of the coarse operator in 3D beyond 10k subdomains,
- deflation vectors need elementary matrices to be computed.

Summary:

- scalable framework for building two-level preconditioners for both Schwarz or substructuring methods (FETI-1),
- easily interfacable (FEM, FVM) without a global ordering.

Outlooks:

- adaptive (re)construction/recycling of the coarse operator,
- nonlinear and saddle point problems.

Final words

Limitations:

- scaling of the coarse operator in 3D beyond 10k subdomains,
- deflation vectors need elementary matrices to be computed.

Summary:

- scalable framework for building two-level preconditioners for both Schwarz or substructuring methods (FETI-1),
- easily interfacable (FEM, FVM) without a global ordering.

Outlooks:

- adaptive (re)construction/recycling of the coarse operator,
- nonlinear and saddle point problems.

Thank you!

國 Spillane, N., V. Dolean, P. Hauret, F. Nataf, C. Pechstein, and R. Scheichl (2011). "A robust two-level domain decomposition preconditioner for systems of PDEs". In: Comptes Rendus Mathematique 349.23, pp. 1255-1259.
目 Tang, J., R. Nabben, C. Vuik, and Y. Erlangga (2009). "Comparison of two-level preconditioners derived from deflation, domain decomposition and multigrid methods". In: Journal of Scientific Computing 39.3, pp. 340-370.

Solvers parameters

- Schwarz GenEO: $\nu_{i}=20$, overlap $=1$ (geometric).
- PETSc GASM: overlap $=10$ (algebraic).
- Hyper BoomerAMG: HMIS coarsening, extended "classical" interpolation, no CF-relaxation, 2 levels of aggressive coarsening.
- PETSc GAMG: 1 smoothing step, -mg_levels_ksp_type richardson -mg_levels_pc_type sor.

OpenMPI bindings for hybrid runs:
--bind-to-socket --bycore.

Distribution of the coarse operator

Uniform distribution

Non-uniform distribution

Distribution of E when built with $N=16$ using 4 masters. On the right, the number of values per master is roughly the same if the values below the diagonal are dropped (symmetric coarse operator).

Timings for assembling the coarse operator

3D

N	P	$\operatorname{dim}(E)$								$\left\|\mathcal{O}_{i}\right\|$ (average)		Memory cost of " $E^{-1} "$		Time	
256	4		5120		11.5		38 MB								
512	6		10240		12.4		78 MB								
1024	8	8	20480	22528	13.0	12.0	156 MB	93 MB							
2048	12	12	40960	40960	13.8	12.9	332 MB	138 MB							
4096	18	22	73728	73728	14.2	13.7	434 MB	172 MB							
8192	64	48	131072	131072	14.7	14.6	420 MB	11.91 s							

2D

N	P	$\operatorname{dim}(E)$		$\left\|\mathcal{O}_{i}\right\|$ (average)	Memory cost of " $E^{-1} "$	Time		
256	2		5376		5.5		21 MB	
512	4		10240		5.6		32 MB	
1024	10	8	20480	24576	5.7	5.5	65 MB	57 MB
2048	14	12	38912	40960	5.8	5.7	94 MB	83 MB
4096	22	18	81920	73728	5.9	5.8	99 MB	73 MB
8192	36	36	163840	122880	5.9	5.8	152 MB	10.05 s

Strong scaling (linear elasticity)

	N	Factorization	Deflation	Solution	\#it.	Total	\#d.o.f.
3D	1024	177.86 s	264.03 s	77.41 s	28	530.56 s	
	2048	62.69 s	97.29 s	20.39 s	23	186.04 s	$293.98 \cdot 10^{6}$
	4096	19.64 s	35.70 s	9.73 s	20	73.12 s	
	8192	6.33 s	22.08 s	6.05 s	27	51.76 s	
2D	1024	37.01 s	131.76 s	34.29 s	28	213.20 s	
	2048	17.55 s	53.83 s	17.52 s	28	95.10 s	$2.14 \cdot 10^{9}$
	4096	6.90 s	27.07 s	8.64 s	23	47.71 s	
	8192	2.01 s	20.78 s	4.79 s	23	34.54 s	

Weak scaling (scalar diffusion equation)

	N	Factorization	Deflation	Solution	\#it.	Total	\#d.o.f.
3D	256	64.24 s	117.74 s	15.81 s	13	200.57 s	$74.62 \cdot 10^{6}$
	512	63.97 s	112.17 s	19.93 s	18	199.41 s	$144.70 \cdot 10^{6}$
	1024	63.22 s	118.58 s	16.18 s	14	202.40 s	$288.80 \cdot 10^{6}$
	2048	59.43 s	117.59 s	21.34 s	17	205.26 s	$578.01 \cdot 10^{6}$
	4096	58.14 s	110.68 s	27.89 s	20	207.47 s	$1.15 \cdot 10^{9}$
	8192	54.96 s	116.64 s	23.64 s	17	215.15 s	$2.31 \cdot 10^{9}$
2D	256	29.40 s	111.35 s	25.71 s	29	175.85 s	$695.96 \cdot 10^{6}$
	512	29.60 s	111.52 s	27.99 s	28	179.07 s	$1.39 \cdot 10^{9}$
	1024	29.43 s	112.18 s	33.63 s	28	185.16 s	$2.79 \cdot 10^{9}$
	2048	29.18 s	112.23 s	33.74 s	28	185.20 s	$5.58 \cdot 10^{9}$
	4096	29.80 s	113.69 s	31.02 s	26	185.38 s	$11.19 \cdot 10^{9}$
	8192	29.83 s	113.81 s	30.67 s	25	187.57 s	$22.31 \cdot 10^{9}$

