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Cloud versus Cloud

Custom user environments!
On-demand access!

Elastic computing!

Isolation!

, Capital expense -> operational expense!

Too complex: do | need to become a sys admin?

What is the best programming model, what are the
tools | need to make effective use of them?

It costs too much! And what if Amazon raises prices?

Performance: especially 1/0, especially Big Data!

Co




Cloud Storage Basics

-(_Ephemeral/Transient Storage
— Loca ' ched to an instance

— Persists only for the lifetime of an instance
— Included in the cost of an instance

— Vanving-capasity-e.9..160 GB-48 TB on AWS
' at can be attached to an instance
— Lifetime independent of a particular instance, can be mounted by many
— Price based on space and time used
— E.g., AWS Elastic Block Storage (EBS), Azure drives
« Storage Clouds
— Data storage as binary objects (BLOBS)

— Price differs based levels of service, e.g., access time or reliability,
space used and time

— E.g., AWS Simple Storage Service (S3), AWS Glacier, Azure BLOBS,
Google Cloud Storage
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Streaming Applications

* Repeatedly apply an
operation to a stream of
data (time events)

« Examples:

— Virtual Observatories: OOl,
Forest project at ANL, IFC

— Experiment processing: STAR,
APS
* Requirements:
— An “always-on” service

— Real-time event-based data
stream processing capabilities

— Highly volatile need for data
distribution and processing
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ATLAS Data Analysns
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Streaming Scenarios
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Streaming Scenarios (2)

Stream&Compute (SC) Copy&Compute (CC)

« Simpler model with fewer + Independent of network
moving parts saturation

* Potentially better « Persistent storage: less
response time liable to data loss

* Overlap computation and
communication
(potentially faster)

» Uses ephemeral storage
(potentially cheaper)
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Experimental Configuration

o Future w Future
s, Grid i, Grid
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« Compute rate: events processed per time unit
« Data rate: amount of data acquired per time unit
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SC versus CC (FutureGrid)

Average Compute Rate per VM Average Data Rate per VM
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CC outperforms SC by almost 4 times in both

compute rates and data rates!
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SC versus CC (Azure)

Average Compute Rate per VM

Average Data Rate per VM
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Data Throughput vs CPU Load
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Multi-Core and Stream&Compute

What is the impact of increasing the number of cores in instances on Stream&Compute?
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Scalability for Stream&Compute

Average Compute Rate per VM
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Scaling Data Sources

Average Compute Rate per VM

Average Data Rate per VM
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Cost
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« Cost of instance: ~$0.1 per hour
« Cost of storage: ~$0.1 per 1GB month

* |n our case (320M events & 5 GB attached storage)
— Stream&Compute: $1.33
— Copy&Compute: $0.48
— Overall: SC is 2.77 times more expensive
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Related Work

« Data management strategies for large unstructured sets of static

data — we focus on dynamic time events

— 1/O Performance of Virtualized Cloud Environments, Ghoshal et al., DataCloud-SC ’11

— A Survey of Large Scale Data Management Approaches in Cloud Environments, S. Sakr et al.
IEEE Communications Surveys and Tutorials

» Performance evaluations about data analysis in the clouds focus on
the MapReduce processing paradigm - we focus on the stream

processing model

— On the Performance and Energy Efficiency of Hadoop Deployment Models, E. Feller et al., IEEE
BigData 2013

— Evaluating Hadoop for Data-Intensive Scientific Operations. Z. Fadika et al. CLOUD ’12

« Stream processing studies — we focus on multi-site processing

— GeoStreaming in Cloud, S. J. Kazemitabar et al. 2011

— Scheduling processing of real-time data streams on heterogeneous multi-GPU systems, U.
Verner et al., SYSTOR ’12
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Conclusions

To stream or not to stream?

— Not to stream!

— Difference of ~4x in performance and ~3x in cost
Amplification of virtualization performance
trade-offs in the presence of remote traffic
Hypervisor design

— Need for controlled allocation of CPU to I/O
processing

Paper: Tudoran et al., “Evaluating Streaming
Strategies for Event Processing across
Infrastructure Clouds”, submitted to CCGrid
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