
Assessing the impact
of ABFT & Checkpoint composite strategies

George Bosilca1, Aurélien Bouteiller1, Thomas Hérault1,
Yves Robert1,2 and Jack Dongarra1

1. University of Tennessee Knoxville, USA
2. École Normale Supérieure de Lyon & INRIA, France

{bosilca,bouteill,herault,dongarra}@icl.utk.edu

yves.robert@ens-lyon.fr

November 26, 2013 - JLPC Workshop

{bosilca,bouteill,herault,dongarra}@icl.utk.edu
yves.robert@ens-lyon.fr

Joint Lab

Fault prediction: checkpointing vs. migration (PPL)

Model to assess checkpoint protocols (CCPE, online)

Checkpointing and prediction (JPDC, online)

In-memory checkpointing (APDCM’13)

Multi-criteria: time vs resource utilization (Europar’13)

Multi-criteria: time vs energy (PMBS’13)

Silent errors, checkpoints & verifications (PRDC’13)

Detection latency

Instantaneous error detection ⇒ fail-stop failures

Silent errors (data corruption) ⇒ detection latency

TimeXe Xd

Error Detection

Error and detection latency

Last checkpoint may have saved an already corrupted state

Even when saving k checkpoints: which one to roll back to?

Critical failure: all checkpoints contain corrupted data

Coupling checkpointing and verification

Verification mechanism of cost V

Simplest idea: verify work before each checkpoint

Time

w V C w V C w V C w V C

V large compared to w ⇒ large Wasteff, can we improve that?

Is this better?

Time

w C w V C w C w V C w C

Coupling checkpointing and verification

Verification mechanism of cost V

Simplest idea: verify work before each checkpoint

Time

w V C w V C w V C w V C

V large compared to w ⇒ large Wasteff, can we improve that?

Is this better?

Time

w C w V C w C w V C w C

Coupling checkpointing and verification

Verification mechanism of cost V

Simplest idea: verify work before each checkpoint

Time

w V C w V C w V C w V C

V small in front of w ⇒ large Wastefail, can we improve that?

Is this better?

Time

w/2 V w/2 V C w/2 V w/2 V C w/2 V w/2 V C w/2 V

Coupling checkpointing and verification

Verification mechanism of cost V

Simplest idea: verify work before each checkpoint

Time

w V C w V C w V C w V C

V small in front of w ⇒ large Wastefail, can we improve that?

Is this better?

Time

w/2 V w/2 V C w/2 V w/2 V C w/2 V w/2 V C w/2 V

Coupling checkpointing and verification

Time

V C w V w V w V w V w V C

Small cost V : 5 verifications for 1 checkpoint

Time

V C w C w C w C w C w V C

Large cost V : 5 checkpoints for 1 verification

More complicated periodic patterns? Different-size chunks?

k checkpoints for 1 verification

Where did the error strike?

Time

Error

V C w C w C w C w C w V

R V R V R V

k checkpoints for 1 verification

Where did the error strike?

Time

Error

V C w C w C w C w C w V R V

R V R V

k checkpoints for 1 verification

Where did the error strike?

Time

Error

V C w C w C w C w C w V R V R V

R V

k checkpoints for 1 verification

Where did the error strike?

Time

Error

V C w C w C w C w C w V R V R V R V

k checkpoints for 1 verification

Where did the error strike?

Time

Error

V C w C w C w C w C w V R V R V R V

Re-Exec = 2(w + C) + (w + V)

Outline

1 Motivation

2 ABFT&PeriodicCkpt

3 Performance Modeling

4 Periodic Checkpointing Protocols (for comparison)

5 Evaluation
As function of α and µ
Weak Scaling

6 Conclusion

Faults

Assume independent failures

Let N be the number of
components (“System
Size”)

Let r be the probability of a
component to operate for 1h

Let R be the probability of
the system to operate for 1h

R = rN

R ≈ 1

eλN
,

1

λ
= 1− r

Petascale Reliability

• Facing the issues
– ASCI Q boot time is ~8 hours

• not far from the system MTTF

– application checkpoint frequency

– MTTF 1/$ = 1-r

• A few assumptions
– assume independent component failures

• an optimistic and not realistic assumption

– N is the number of processors

– r is probability a component operates for 1 hour

– R is probability the system operates for 1 hour

• Then or for large NNrR # N!e
R

1
%

0

20

40

60

80

100

120

140

10
0

20
0

30
0

40
0

50
0

70
0

10
00

20
00

40
00

80
00

16
00

0

32
00

0

64
00

0

20
00

00

0.9999

0.99999

0.999999

1 hour reliability

System Size

M
T

T
F

 (
h

o
u

rs
)

ASCI Q

(Figure from Dan Reed “The Challenge of Complexity
and Scale”)

Faults

Assume independent failures

Let N be the number of
components (“System
Size”)

Let r be the probability of a
component to operate for 1h

Let R be the probability of
the system to operate for 1h

R = rN

R ≈ 1

eλN
,

1

λ
= 1− r

 0

 20

 40

 60

 80

 100

 120

 140

 100 1000 10000 100000

M
T

T
F

 (
h
o
u
rs

)
System Size

1 hour reliability
0.9999

0.99999
0.999999

(Same figure with plotting software)

Faults

Assume independent failures

Let N be the number of
components (“System
Size”)

Let r be the probability of a
component to operate for 1h

Let R be the probability of
the system to operate for 1h

R = rN

R ≈ 1

eλN
,

1

λ
= 1− r

 0

 20

 40

 60

 80

 100

 120

 140

 100 1000 10000 100000

M
T

T
F

 (
h
o
u
rs

)
System Size

1 hour reliability
0.9999

0.99999
0.999999

Titan

(Same figure with plotting software)

Fault Tolerance Techniques

General Techniques

Replication

Rollback Recovery

Coordinated Checkpointing
Uncoordinated Checkpointing &
Message Logging
Hierarchical Checkpointing

Application-Specific Techniques

Algorithm Based Fault Tolerance
(ABFT)

Iterative Convergence

Coordinated Checkpointing and Rollback Recovery

Coordinated checkpoints over all
processes

Global restart after a failure

P0

P1

P2

m1 m2 m3

m4 m5

, General technique (we assume preemptive checkpointing
capability)

/ All processors need to roll back

/ All memory needs to be saved

Algorithm-Based Fault Tolerance

A

()
B

()

A C

()
B C ′

 

Operation

Operation

C = Cksum(A) C ′ = Cksum(B)

Principle of ABFT

Input Data (A) and Result (B) are distributed

Operation preserves Checksum properties

Apply the operation on Data + Checksum (AC)

In case of failure, recover the missing data by inversion of the
checksum

Application

Typical Application

f o r (an insanenumber) {
/∗ E x t r a c t data from
∗ s i m u l a t i o n , f i l l up
∗ m a t r i x ∗/

sim2mat () ;

/∗ F a c t o r i z e matr ix ,
∗ S o l v e ∗/

d g e q r f () ;
d s o l v e () ;

/∗ Update s i m u l a t i o n
∗ w i t h r e s u l t v e c t o r ∗/

vec2s im () ;
}

Process 0

Process 1

Process 2

Application

Application

Application

Library

Library

Library

LIBRARY Phase GENERAL Phase

Characteristics

, Large part of (total)
computation spent in
factorization/solve

Between LA operations:

/ use resulting vector / matrix
with operations that do not
preserve data checksums

/ modify data not covered by
ABFT algorithms

Application

Typical Application

f o r (an insanenumber) {
/∗ E x t r a c t data from
∗ s i m u l a t i o n , f i l l up
∗ m a t r i x ∗/

sim2mat () ;

/∗ F a c t o r i z e matr ix ,
∗ S o l v e ∗/

d g e q r f () ;
d s o l v e () ;

/∗ Update s i m u l a t i o n
∗ w i t h r e s u l t v e c t o r ∗/

vec2s im () ;
}

Process 0

Process 1

Process 2

Application

Application

Application

Library

Library

Library

LIBRARY Phase GENERAL Phase

Characteristics

, Large part of (total)
computation spent in
factorization/solve

Between LA operations:

/ use resulting vector / matrix
with operations that do not
preserve data checksums

/ modify data not covered by
ABFT algorithms

Goodbye ABFT?!

Application

Typical Application

f o r (an insanenumber) {
/∗ E x t r a c t data from
∗ s i m u l a t i o n , f i l l up
∗ m a t r i x ∗/

sim2mat () ;

/∗ F a c t o r i z e matr ix ,
∗ S o l v e ∗/

d g e q r f () ;
d s o l v e () ;

/∗ Update s i m u l a t i o n
∗ w i t h r e s u l t v e c t o r ∗/

vec2s im () ;
}

Process 0

Process 1

Process 2

Application

Application

Application

Library

Library

Library

LIBRARY Phase GENERAL Phase

Characteristics

, Large part of (total)
computation spent in
factorization/solve

Between LA operations:

/ use resulting vector / matrix
with operations that do not
preserve data checksums

/ modify data not covered by
ABFT algorithms

Problem Statement

How to use fault tolerant operations (∗) within a
non-fault tolerant (∗∗) application? (∗∗∗)

(*) ABFT, or other application-specific FT
(**) Or within an application that does not have the same kind of FT

(***) And keep the application globally fault tolerant...

Outline

1 Motivation

2 ABFT&PeriodicCkpt

3 Performance Modeling

4 Periodic Checkpointing Protocols (for comparison)

5 Evaluation
As function of α and µ
Weak Scaling

6 Conclusion

ABFT&PeriodicCkpt

ABFT&PeriodicCkpt: no failure

Process 0

Process 1

Process 2

Application

Application

Application

Library

Library

Library

Periodic
Checkpoint

Split
Forced

Checkpoints

ABFT&PeriodicCkpt

ABFT&PeriodicCkpt: failure during Library phase

Process 0

Process 1

Process 2

Application

Application

Application

Library

Library

Library

Failure
(during LIBRARY)

Rollback
(partial)

Recovery

ABFT
Recovery

ABFT&PeriodicCkpt

ABFT&PeriodicCkpt: failure during General phase

Process 0

Process 1

Process 2

Application

Application

Application

Library

Library

Library

Failure
(during GENERAL)

Rollback
(fulll)

Recovery

ABFT&PeriodicCkpt: Optimizations

Process 0

Process 1

Process 2

Application

Application

Application

Library

Library

Library

ABFT&P
ERIO

DICC
KPT

ABFT&PeriodicCkpt: Optimizations

If the duration of the General phase is too small: don’t add
checkpoints

If the duration of the Library phase is too small: don’t do
ABFT recovery, remain in General mode

this assumes a performance model for the library call

ABFT&PeriodicCkpt: Optimizations

Process 0

Process 1

Process 2

Application

Application

Application

Library

Library

Library

ABFT&P
ERIO

DICC
KPT

GENERAL
Checkpoint Interval

ABFT&PeriodicCkpt: Optimizations

If the duration of the General phase is too small: don’t add
checkpoints

If the duration of the Library phase is too small: don’t do
ABFT recovery, remain in General mode

this assumes a performance model for the library call

Outline

1 Motivation

2 ABFT&PeriodicCkpt

3 Performance Modeling

4 Periodic Checkpointing Protocols (for comparison)

5 Evaluation
As function of α and µ
Weak Scaling

6 Conclusion

A few notations

Process 0

Process 1

Process 2

Application

Application

Application

Library

Library

Library

T0

TG TL

PG

Times, Periods

T0: Duration of an Epoch (without FT)
TL = αT0: Time spent in the Library phase
TG = (1− α)T0: Time spent in the General phase
PG : Periodic Checkpointing Period
Tff,Tff

G ,T
ff
L : “Fault Free” times

t lost
G , t lost

L : Lost time (recovery overhreads)
T final
G ,T final

L : Total times (with faults)

A few notations

Process 0

Process 1

Process 2

Application

Application

Application

Library

Library

Library

C CLCL

Costs

CL = ρC : time to take a checkpoint of the Library data set
CL̄ = (1− ρ)C : time to take a checkpoint of the General data
set
R,RL̄: time to load a full / General data set checkpoint
D: down time (time to allocate a new machine / reboot)
ReconsABFT: time to apply the ABFT recovery
φ: Slowdown factor on the Library phase, when applying ABFT

General phase, fault free waste

General phase

Process 0

Process 1

Process 2

Application

Application

Application

Library

Library

Library

Periodic
Checkpoint

Split
Forced

Checkpoints

Without Failures

Tff
G =

{
TG + CL̄ if TG < PG
TG

PG−C × PG if TG ≥ PG

Library phase, fault free waste

Library phase

Process 0

Process 1

Process 2

Application

Application

Application

Library

Library

Library

Periodic
Checkpoint

Split
Forced

Checkpoints

Without Failures

Tff
L = φ× TL + CL

General phase, failure overhead

General phase

Process 0

Process 1

Process 2

Application

Application

Application

Library

Library

Library

Failure
(during GENERAL)

Rollback
(fulll)

Recovery

Failure Overhead

t lost
G =

{
D + R +

Tff
G

2 if TG < PG

D + R + PG
2 if TG ≥ PG

Library phase, failure overhead

Library phase

Process 0

Process 1

Process 2

Application

Application

Application

Library

Library

Library

Failure
(during LIBRARY)

Rollback
(partial)

Recovery

ABFT
Recovery

Failure Overhead

t lost
L = D + RL̄ + ReconsABFT

Overall

Overall

Time (with overheads) of Library phase is constant (in PG):

T final
L =

1

1− D+RL̄+ReconsABFT

µ

× (α× TL + CL)

Time (with overehads) of General phase accepts two cases:

T final
G =


1

1−D+R+
TG +C

L̄
2

µ

× (TG + CL) if TG < PG

TG

(1− C
PG

)(1−D+R+
PG

2
µ

)

if TG ≥ PG

Which is minimal in the second case, if

PG =
√

2C (µ− D − R)

Waste

From the previous, we derive the waste, which is obtained by

Waste = 1− T0

T final
G + T final

L

Outline

1 Motivation

2 ABFT&PeriodicCkpt

3 Performance Modeling

4 Periodic Checkpointing Protocols (for comparison)

5 Evaluation
As function of α and µ
Weak Scaling

6 Conclusion

PurePeriodicCkpt

PurePeriodicCkpt

Process 0

Process 1

Process 2

Application

Application

Application

Library

Library

Library

P
UREP

ERIO
DICC

KPT

Optimal Checkpoint Interval

Optimization

Popt
PC =

√
2C (µ− D − R)

BiPeriodicCkpt

BiPeriodicCkpt

Process 0

Process 1

Process 2

Application

Application

Application

Library

Library

Library

B
IP

ERIO
DICC

KPT

LIBRARY
Checkpoint Interval

GENERAL
Checkpoint Interval

Optimization

Popt
BPC ,G =

√
2C (µ− D − R)

Popt
BPC ,L =

√
2CL(µ− D − R)

Outline

1 Motivation

2 ABFT&PeriodicCkpt

3 Performance Modeling

4 Periodic Checkpointing Protocols (for comparison)

5 Evaluation
As function of α and µ
Weak Scaling

6 Conclusion

Outline

1 Motivation

2 ABFT&PeriodicCkpt

3 Performance Modeling

4 Periodic Checkpointing Protocols (for comparison)

5 Evaluation
As function of α and µ
Weak Scaling

6 Conclusion

Model & Simulations: PurePeriodicCkpt

PurePeriodicCkpt

Model & Simulations: BiPeriodicCkpt

BiPeriodicCkpt

Model & Simulations: ABFT&PeriodicCkpt

ABFT&PeriodicCkpt

Model: PurePeriodicCkpt vs. BiPeriodicCkpt

T0=1w, C=R=10min, D=1min, ρ=0.8, φ=1.03, ReconsABFT=2

 60 80 100 120 140 160 180 200 220 240

MTBF system (minutes)

 0

 0.2

 0.4

 0.6

 0.8

 1

R
a
ti
o
 o

f
ti
m

e
 s

p
e
n
t
in

 L
ib

ra
ry

 P
h
a
s
e
 (

α
)

 0

 0.2

 0.4

 0.6

 0.8

 1

T0=1w, C=R=10min, D=1min, ρ=0.8, φ=1.03, ReconsABFT=2

 60 80 100 120 140 160 180 200 220 240

MTBF system (minutes)

 0

 0.2

 0.4

 0.6

 0.8

 1

R
a
ti
o
 o

f
ti
m

e
 s

p
e
n
t
in

 L
ib

ra
ry

 P
h
a
s
e
 (

α
)

 0

 0.2

 0.4

 0.6

 0.8

 1

PurePeriodicCkpt BiPeriodicCkpt

Model & Simulations: PurePeriodicCkpt vs.
ABFT&PeriodicCkpt

T0=1w, C=R=10min, D=1min, ρ=0.8, φ=1.03, ReconsABFT=2

 60 80 100 120 140 160 180 200 220 240

MTBF system (minutes)

 0

 0.2

 0.4

 0.6

 0.8

 1

R
a
ti
o
 o

f
ti
m

e
 s

p
e
n
t
in

 L
ib

ra
ry

 P
h
a
s
e
 (

α
)

 0

 0.2

 0.4

 0.6

 0.8

 1

T0=1w, C=R=10min, D=1min, ρ=0.8, φ=1.03, ReconsABFT=2

 60 80 100 120 140 160 180 200 220 240

MTBF system (minutes)

 0

 0.2

 0.4

 0.6

 0.8

 1

R
a
ti
o
 o

f
ti
m

e
 s

p
e
n
t
in

 L
ib

ra
ry

 P
h
a
s
e
 (

α
)

 0

 0.2

 0.4

 0.6

 0.8

 1

PurePeriodicCkpt ABFT&PeriodicCkpt

Model & Simulations: BiPeriodicCkpt vs.
ABFT&PeriodicCkpt

T0=1w, C=R=10min, D=1min, ρ=0.8, φ=1.03, ReconsABFT=2

 60 80 100 120 140 160 180 200 220 240

MTBF system (minutes)

 0

 0.2

 0.4

 0.6

 0.8

 1

R
a
ti
o
 o

f
ti
m

e
 s

p
e
n
t
in

 L
ib

ra
ry

 P
h
a
s
e
 (

α
)

 0

 0.2

 0.4

 0.6

 0.8

 1

T0=1w, C=R=10min, D=1min, ρ=0.8, φ=1.03, ReconsABFT=2

 60 80 100 120 140 160 180 200 220 240

MTBF system (minutes)

 0

 0.2

 0.4

 0.6

 0.8

 1

R
a
ti
o
 o

f
ti
m

e
 s

p
e
n
t
in

 L
ib

ra
ry

 P
h
a
s
e
 (

α
)

 0

 0.2

 0.4

 0.6

 0.8

 1

BiPeriodicCkpt ABFT&PeriodicCkpt

Outline

1 Motivation

2 ABFT&PeriodicCkpt

3 Performance Modeling

4 Periodic Checkpointing Protocols (for comparison)

5 Evaluation
As function of α and µ
Weak Scaling

6 Conclusion

Toward Exascale, and Beyond!

Let’s think at scale

Number of components ↗⇒ MTBF ↘
Number of components ↗⇒ Problem Size ↗
Problem Size ↗⇒

Computation Time spent in Library phase ↗

, ABFT&PeriodicCkpt should perform better with scale

ĳ/ By how much?

Weak Scale #1

Weak Scale Scenario #1

Number of components, x , increases

Memory per component Mind remains constant

PbSize n increases in O(
√
x) (e.g. matrix, n2 = xMind)

µ at x = 105: 1 day, is in O(1
x)

C (=R) at x = 105, is 1 minute, is in O(x)

α is constant at 0.8, as is ρ.

(both Library and General phase increase in time at the
same speed)

Weak Scale #1

 0

 10

 20

 30

 40

#
 F

a
u

lt
s Nb Faults PeriodicCkpt

Nb Faults Bi-PeriodicCkpt
Nb Faults ABFT PeriodicCkpt

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

1k 10k 100k 1M

W
a

s
te

Nodes

PeriodicCkpt
Bi-PeriodicCkpt

ABFT PeriodicCkpt

Weak Scale #2

Weak Scale Scenario #2

Number of components, x , increases

Memory per component Mind remains constant

PbSize n increases in O(
√
x) (e.g. matrix, n2 = xMind)

µ at x = 105: 1 day, is O(1
x)

C (=R) at x = 105, is 1 minute, is in O(x)

ρ remains constant at 0.8, but Library phase is O(n3) when
General phases progresses in O(n2) (α is 0.8 at x = 105

nodes).

Weak Scale #2

 0
 2
 4
 6
 8

#
 F

a
u

lt
s Nb Faults PeriodicCkpt

Nb Faults Bi-PeriodicCkpt
Nb Faults ABFT PeriodicCkpt

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

1k
α = 0.55

10k
α = 0.8

100k
α = 0.92

1M
α = 0.975

W
a

s
te

Nodes

PeriodicCkpt
Bi-PeriodicCkpt

ABFT PeriodicCkpt

Weak Scale #3

Weak Scale Scenario #3

Number of components, x , increases

Memory per component Mind remains constant

PbSize increases in O(
√
x) (e.g. matrix, n2 = xMind)

µ at x = 105: 1 day, is O(1
x)

C (=R) at x = 105, is 1 minute, stays independent of x
(O(1))

ρ remains constant at 0.8, but Library phase is O(n3) when
General phases progresses in O(n2) (α is 0.8 at x = 105

nodes).

Weak Scale #3

 0

 2

 4

 6

#
 F

a
u

lts

Nb Faults PeriodicCkpt
Nb Faults Bi-PeriodicCkpt

Nb Faults ABFT PeriodicCkpt

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

1k
α = 0.55

10k
α = 0.8

100k
α = 0.92

1M
α = 0.975

W
a

st
e

Nodes

PeriodicCkpt
Bi-PeriodicCkpt

ABFT PeriodicCkpt

Outline

1 Motivation

2 ABFT&PeriodicCkpt

3 Performance Modeling

4 Periodic Checkpointing Protocols (for comparison)

5 Evaluation
As function of α and µ
Weak Scaling

6 Conclusion

Conclusion

Method of composing fault tolerance approaches

applications that alternate between ABFT-aware and
ABFT-unaware sections
each section is protected by its own mechanism

Performance model shows good opportunity for scaling

even when checkpointing hypothesis is optimistic
composite approach benefits from checkpointing improvements
too

Energy Efficiency? Checkpointing on Buddies?
Checksumming? Better techniques to recover the
ABFT-protected data in some cases.

	Motivation
	ABFT&PeriodicCkpt
	Performance Modeling
	Periodic Checkpointing Protocols (for comparison)
	Evaluation
	As function of and
	Weak Scaling

	Conclusion

