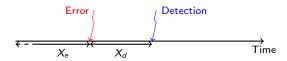
Assessing the impact of ABFT & Checkpoint composite strategies

George Bosilca¹, Aurélien Bouteiller¹, Thomas Hérault¹, <u>Yves Robert^{1,2}</u> and Jack Dongarra¹

University of Tennessee Knoxville, USA École Normale Supérieure de Lyon & INRIA, France

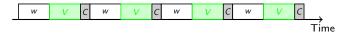

November 26, 2013 - JLPC Workshop

(日) (國) (필) (필) (필) 표

- Fault prediction: checkpointing vs. migration (PPL)
- Model to assess checkpoint protocols (CCPE, online)
- Checkpointing and prediction (JPDC, online)
- In-memory checkpointing (APDCM'13)
- Multi-criteria: time vs resource utilization (Europar'13)
- Multi-criteria: time vs energy (PMBS'13)
- Silent errors, checkpoints & verifications (PRDC'13)

Detection latency

- Instantaneous error detection \Rightarrow fail-stop failures
- Silent errors (data corruption) \Rightarrow detection latency



Error and detection latency

- Last checkpoint may have saved an already corrupted state
- Even when saving k checkpoints: which one to roll back to?

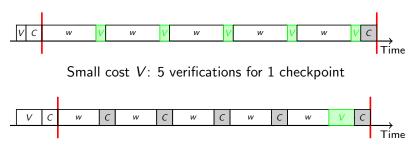
• Critical failure: all checkpoints contain corrupted data

- Verification mechanism of cost V
- Simplest idea: verify work before each checkpoint

V large compared to $w \Rightarrow$ large WASTE^{ff}, can we improve that?

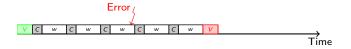
- Verification mechanism of cost V
- Simplest idea: verify work before each checkpoint

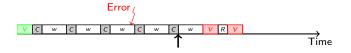
V large compared to $w \Rightarrow$ large WASTE^{ff}, can we improve that?


- Verification mechanism of cost V
- Simplest idea: verify work before each checkpoint

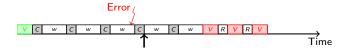
V small in front of $w \Rightarrow$ large WASTE^{fail}, can we improve that?

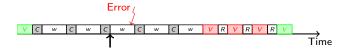
- Verification mechanism of cost V
- Simplest idea: verify work before each checkpoint

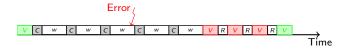



Large cost V: 5 checkpoints for 1 verification

More complicated periodic patterns? Different-size chunks?


- 日本 - 4 日本 - 4 日本 - 日本




◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

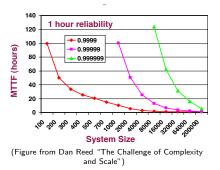
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Re-Exec = 2(w + C) + (w + V)

Outline

1 Motivation

- 2 ABFT&PeriodicCkpt
- ③ Performance Modeling
- Periodic Checkpointing Protocols (for comparison)


- 5 Evaluation
 - As function of α and μ
 - Weak Scaling

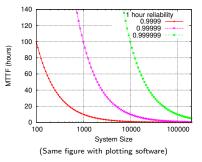
6 Conclusion

Faults

- Assume independent failures
- Let *N* be the number of components ("System Size")
- Let *r* be the probability of a component to operate for 1h
- Let *R* be the probability of the system to operate for 1h

$$R = r^N$$

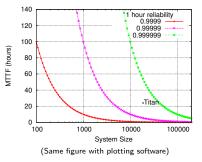
 $R pprox rac{1}{e^{\lambda N}}, rac{1}{\lambda} = 1 - r$



・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Faults

- Assume independent failures
- Let *N* be the number of components ("System Size")
- Let *r* be the probability of a component to operate for 1h
- Let *R* be the probability of the system to operate for 1h


$$R = r^N$$

 $R pprox rac{1}{e^{\lambda N}}, rac{1}{\lambda} = 1 - r$

Faults

- Assume independent failures
- Let *N* be the number of components ("System Size")
- Let *r* be the probability of a component to operate for 1h
- Let *R* be the probability of the system to operate for 1h

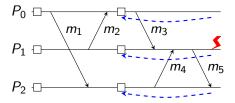
$$R = r^N$$

 $R pprox rac{1}{e^{\lambda N}}, rac{1}{\lambda} = 1 - r$

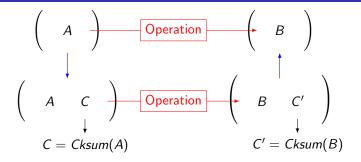
Fault Tolerance Techniques

General Techniques

- Replication
- Rollback Recovery
 - Coordinated Checkpointing
 - Uncoordinated Checkpointing & Message Logging
 - Hierarchical Checkpointing


Application-Specific Techniques

- Algorithm Based Fault Tolerance (ABFT)
- Iterative Convergence


Coordinated Checkpointing and Rollback Recovery

- Coordinated checkpoints over all processes
- Global restart after a failure

- General technique (we assume preemptive checkpointing capability)
- © All processors need to roll back
- ③ All memory needs to be saved

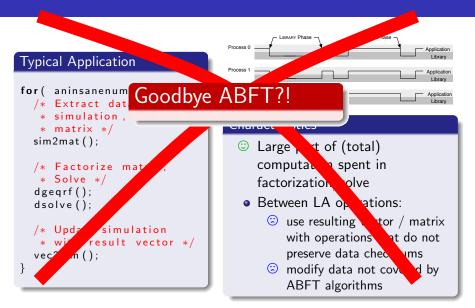
Algorithm-Based Fault Tolerance

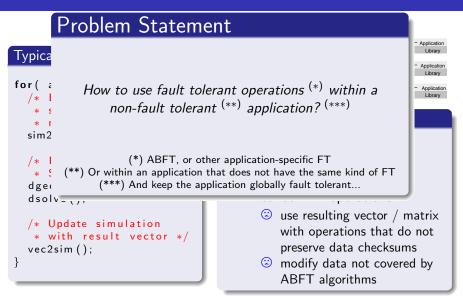
Principle of ABFT

- Input Data (A) and Result (B) are distributed
- Operation preserves Checksum properties
- Apply the operation on Data + Checksum (AC)
- In case of failure, recover the missing data by inversion of the checksum

Application


```
/* Factorize matrix,
 * Solve */
dgeqrf();
dsolve();
```


```
/* Update simulation
 * with result vector */
vec2sim();
```



Characteristics

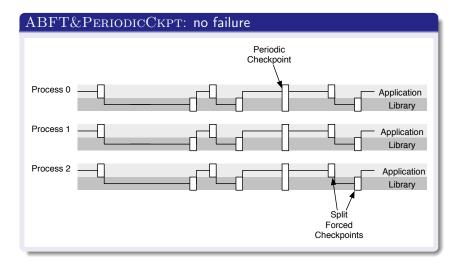
- Large part of (total) computation spent in factorization/solve
 - Between LA operations:
 - use resulting vector / matrix with operations that do not preserve data checksums
 - modify data not covered by ABFT algorithms

Application

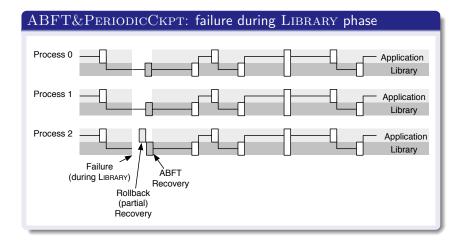
Application

Outline

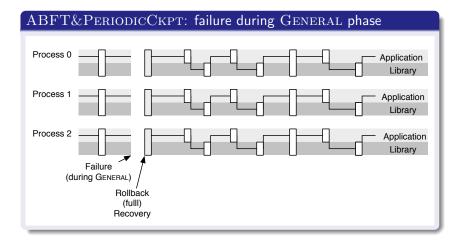
Motivation

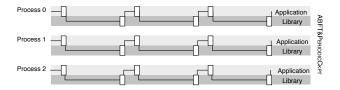

- **2** ABFT&PeriodicCkpt
- ③ Performance Modeling
- 4 Periodic Checkpointing Protocols (for comparison)

5 Evaluation


- As function of α and μ
- Weak Scaling

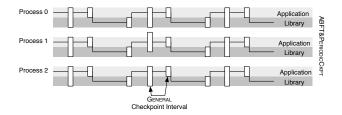
6 Conclusion


ABFT&PeriodicCkpt


ABFT&PeriodicCkpt

ABFT&PeriodicCkpt

ABFT&PERIODICCKPT: Optimizations



ABFT&PERIODICCKPT: Optimizations

- If the duration of the GENERAL phase is too small: don't add checkpoints
- If the duration of the LIBRARY phase is too small: don't do ABFT recovery, remain in GENERAL mode

• this assumes a performance model for the library call

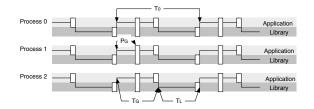
ABFT&PERIODICCKPT: Optimizations

ABFT&PERIODICCKPT: Optimizations

- If the duration of the GENERAL phase is too small: don't add checkpoints
- If the duration of the LIBRARY phase is too small: don't do ABFT recovery, remain in GENERAL mode
 - this assumes a performance model for the library call

Outline

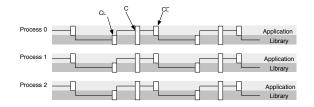
Motivation


- 2 ABFT&PeriodicCkpt
- 3 Performance Modeling
- 4 Periodic Checkpointing Protocols (for comparison)

5 Evaluation

- As function of α and μ
- Weak Scaling

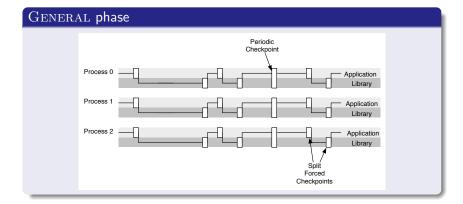
6 Conclusion


A few notations

Times, Periods

 $T_{0}: \text{ Duration of an Epoch (without FT)} \\ T_{L} = \alpha T_{0}: \text{ Time spent in the LIBRARY phase} \\ T_{G} = (1 - \alpha) T_{0}: \text{ Time spent in the GENERAL phase} \\ P_{G}: \text{ Periodic Checkpointing Period} \\ T_{G}^{\text{ff}}, T_{G}^{\text{ff}}, T_{L}^{\text{ff}}: \text{ "Fault Free" times} \\ t_{G}^{\text{lost}}, t_{L}^{\text{lost}}: \text{ Lost time (recovery overhreads)} \\ T_{G}^{\text{final}}, T_{L}^{\text{final}}: \text{ Total times (with faults)} \end{aligned}$

A few notations



Costs

 $C_L = \rho C$: time to take a checkpoint of the LIBRARY data set $C_{\bar{L}} = (1 - \rho)C$: time to take a checkpoint of the GENERAL data set

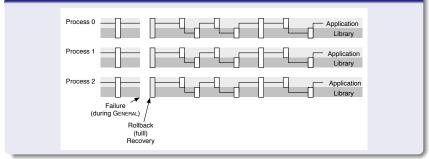
 $R, R_{\overline{L}}$: time to load a full / GENERAL data set checkpoint *D*: down time (time to allocate a new machine / reboot) Recons_{ABFT}: time to apply the ABFT recovery ϕ : Slowdown factor on the LIBRARY phase, when applying ABFT

GENERAL phase, fault free waste

Without Failures

$$T_G^{\rm ff} = \begin{cases} T_G + C_{\bar{L}} & \text{if } T_G < P_G \\ \frac{T_G}{P_G - C} \times P_G & \text{if } T_G \ge P_G \end{cases}$$

LIBRARY phase, fault free waste

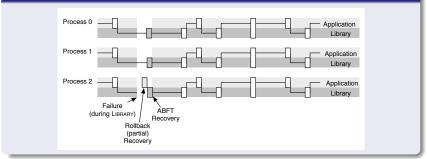

LIBRARY phase Periodic Checkpoint Process 0 _ Application Library Process 1 Application Library Process 2 Application Library Split Forced Checkpoints

Without Failures

$$T_L^{\rm ff} = \phi \times T_L + C_L$$

GENERAL phase, failure overhead

$\operatorname{GENERAL}$ phase



Failure Overhead

$$t_G^{\text{lost}} = \begin{cases} D + R + \frac{T_G^{\text{ff}}}{2} & \text{if } T_G < P_G \\ D + R + \frac{P_G}{2} & \text{if } T_G \ge P_G \end{cases}$$

LIBRARY phase, failure overhead

LIBRARY phase

Failure Overhead

$$t_L^{\text{lost}} = D + R_{\overline{L}} + \text{Recons}_{\text{ABFT}}$$

Overall

Overall

Time (with overheads) of LIBRARY phase is constant (in P_G):

$$T_L^{\mathsf{final}} = rac{1}{1 - rac{D + R_{\tilde{L}} + \mathsf{Recons}_{\mathsf{ABFT}}}{\mu}} imes (lpha imes T_L + \mathcal{C}_L)$$

Time (with overehads) of GENERAL phase accepts two cases:

$$T_{G}^{\text{final}} = \begin{cases} \frac{1}{1 - \frac{D + R + \frac{T_{G} + C_{\tilde{L}}}{2}}{\mu_{G}}} \times (T_{G} + C_{L}) & \text{if } T_{G} < P_{G} \\ \frac{\mu_{T_{G}}}{(1 - \frac{C}{P_{G}})(1 - \frac{D + R + \frac{P_{G}}{2}}{\mu})} & \text{if } T_{G} \ge P_{G} \end{cases}$$

Which is minimal in the second case, if

$$P_{G} = \sqrt{2C(\mu - D - R)}$$

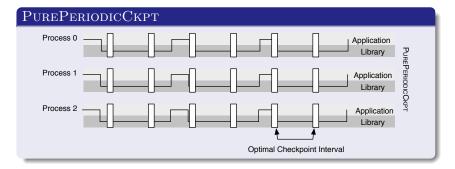
Waste

From the previous, we derive the waste, which is obtained by

$$\text{WASTE} = 1 - \frac{T_0}{T_G^{\text{final}} + T_L^{\text{final}}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Motivation

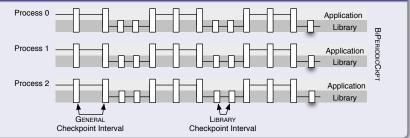

- 2 ABFT&PeriodicCkpt
- ③ Performance Modeling

Periodic Checkpointing Protocols (for comparison)

5 Evaluation

- As function of α and μ
- Weak Scaling

PurePeriodicCkpt


Optimization

$$P_{PC}^{\rm opt} = \sqrt{2C(\mu - D - R)}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

BIPERIODICCKPT

BIPERIODICCKPT

Optimization

$$P^{\mathsf{opt}}_{BPC,G} = \sqrt{2C(\mu - D - R)}$$

$$P^{ ext{opt}}_{BPC,L} = \sqrt{2C_L(\mu - D - R)}$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへぐ

Motivation

- 2 ABFT&PeriodicCkpt
- ③ Performance Modeling
- Periodic Checkpointing Protocols (for comparison)

- 5 Evaluation
 - As function of $\alpha~$ and μ
 - Weak Scaling

Motivation

- 2 ABFT&PeriodicCkpt
- ③ Performance Modeling
- Periodic Checkpointing Protocols (for comparison)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- 5 Evaluation
 - As function of α and μ
 - Weak Scaling

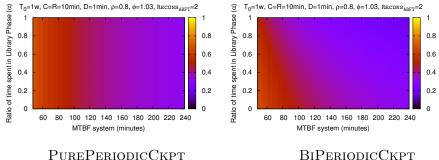
Model & Simulations: PUREPERIODICCKPT

PurePeriodicCkpt

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Model & Simulations: BIPERIODICCKPT

BIPERIODICCKPT

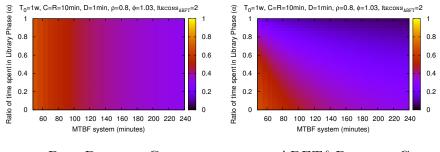

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Model & Simulations: ABFT&PERIODICCKPT

ABFT&PERIODICCKPT

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Model: PUREPERIODICCKPT vs. BIPERIODICCKPT

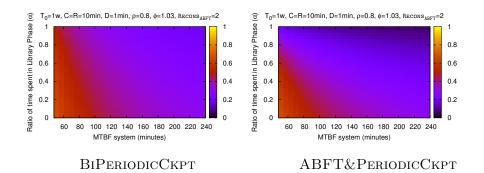


BIPERIODICCKPT

イロト イポト イヨト イヨト

э

Model & Simulations: PUREPERIODICCKPT vs. ABFT&PERIODICCKPT


PurePeriodicCkpt

ABFT&PERIODICCKPT

(日) (同) (日) (日)

э

Model & Simulations: BIPERIODICCKPT vs. ABFT&PERIODICCKPT

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三重 - 釣��

Motivation

- 2 ABFT&PeriodicCkpt
- 3 Performance Modeling
- Periodic Checkpointing Protocols (for comparison)

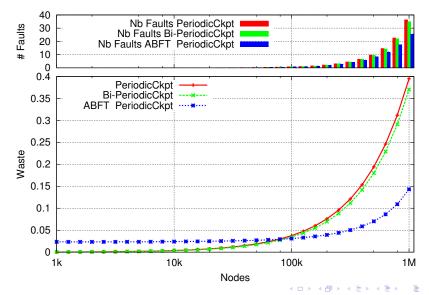
5 Evaluation

- As function of α and μ
- Weak Scaling

Let's think at scale

- Number of components $\nearrow \Rightarrow MTBF \searrow$
- Number of components \nearrow Problem Size \nearrow
- Problem Size $\nearrow \Rightarrow$

Computation Time spent in LIBRARY phase \nearrow


ABFT&PERIODICCKPT should perform better with scale
 By how much?

Weak Scale Scenario #1

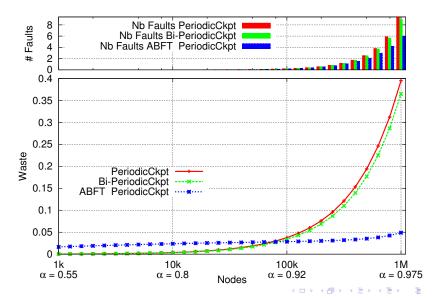
- Number of components, x, increases
- Memory per component M_{ind} remains constant
- PbSize *n* increases in $O(\sqrt{x})$ (e.g. matrix, $n^2 = xM_{ind}$)
- μ at $x = 10^5$: 1 day, is in $O(\frac{1}{x})$
- C(=R) at $x = 10^5$, is 1 minute, is in O(x)
- α is constant at 0.8, as is ρ .

(both $\ensuremath{\mathrm{LIBRARY}}$ and $\ensuremath{\mathrm{GENERAL}}$ phase increase in time at the same speed)

Weak Scale #1

900

Weak Scale Scenario #2


- Number of components, x, increases
- Memory per component M_{ind} remains constant
- PbSize *n* increases in $O(\sqrt{x})$ (e.g. matrix, $n^2 = xM_{ind}$)

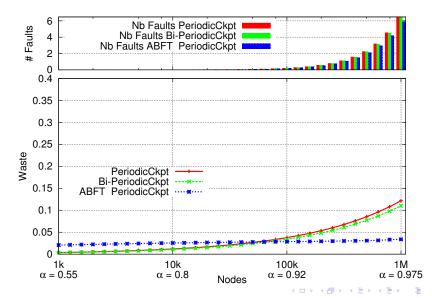
•
$$\mu$$
 at $x=10^5$: 1 day, is $O(rac{1}{x})$

• C (=R) at $x = 10^5$, is 1 minute, is in O(x)

• ρ remains constant at 0.8, but LIBRARY phase is $O(n^3)$ when GENERAL phases progresses in $O(n^2)$ (α is 0.8 at $x = 10^5$ nodes).

Weak Scale #2

SQ (P


Weak Scale Scenario #3

- Number of components, x, increases
- Memory per component M_{ind} remains constant
- PbSize increases in $O(\sqrt{x})$ (e.g. matrix, $n^2 = xM_{ind}$)

•
$$\mu$$
 at $x = 10^5$: 1 day, is $O(\frac{1}{x})$

- C (=R) at x = 10⁵, is 1 minute, stays independent of x (O(1))
- ρ remains constant at 0.8, but LIBRARY phase is $O(n^3)$ when GENERAL phases progresses in $O(n^2)$ (α is 0.8 at $x = 10^5$ nodes).

Weak Scale #3

590

Motivation

- 2 ABFT&PeriodicCkpt
- 3 Performance Modeling
- Periodic Checkpointing Protocols (for comparison)

5 Evaluation

- As function of α and μ
- Weak Scaling

Conclusion

- Method of composing fault tolerance approaches
 - applications that alternate between ABFT-aware and ABFT-unaware sections
 - each section is protected by its own mechanism
- Performance model shows good opportunity for scaling
 - even when checkpointing hypothesis is optimistic
 - composite approach benefits from checkpointing improvements too

• Energy Efficiency? Checkpointing on Buddies? Checksumming? Better techniques to recover the ABFT-protected data in some cases.