

Topology and behavior aware failure prediction for Blue Waters

Ana Gainaru

Franck Cappello, Marc Snir, Bill Kramer

Failure Impact on Multiple Machines

0.5

Timeline

8 JLPC workshops

- Event log classification tool for large-scale systems
 - HELO tool
 - Classify messages
 - Create events
 - Paper at Europar 2011

- Framework for Event Log Analysis in HPC
 - Work done with NCSA
 - Parallelize HELO on IBM service nodes
 - First example of correlation
 - Found in Blue Gene/L
 - Demo at SC 2010

Modeling and Tolerating Heterogeneous Failures in

Large Parallel Systems

- Work done with Eric Heien and Derrick Kondo
 - Analyze failures on NCSA's Mercury
 - Different failures have different behaviors
- Paper at SC 2011

- Signal Analysis for Modeling the Normal and Faulty Behavior of Large-scale Systems
 - Signal analysis modules (ELSA)
 - Used to detect anomalies
 - Experiments done on the LANL system (public traces)
 - Paper at IPDPS 2012

- A detailed analysis of fault prediction results and impact for HPC systems
 - Combine signal analysis with data mining
 - Break down on different event types
 - Experiments done on the Blue Gene/L (public traces)
 - Paper at SC 2012

- Coupling failure prediction, proactive and preventive checkpoint
 - Combine ELSA with FTI

Measure the overhead on Tsubame 2.0 with the Gadget 2 application

- Mathematical model by Slim Bouguerra
- Paper at IPDPS 2013

- Challenges in predicting failures on the Blue Waters system
 - Online failure prediction
 - Results on BlueGene/L:
 - 50% recall 80% precision 10s lead time 3 months of training
 - Blue Waters: ~20% recall

- Topology and behavior aware failure prediction for Blue Waters
 - Optimizations to increase the prediction results
 - Focus:
 - Multi-node failures
 - Application failure prediction
 - Submitted to IPDPS 2014

Quick reminder

Figure 1. Failure prediction: simulate online

Figure 2. Online failure prediction

Quick reminder

Figure 2. Online failure prediction

Online prediction on BW

Results For May ■ Recall 80 Precision 70 60 50 40 30 20 10 Online BP Simulate online Simulate online Online BR BR

Figure 6. Precision and recall for the Blue Waters

• In August 2013, Blue Waters was upgraded with 12 additional Cray XK racks, each with 96 nodes

Limitations

- Location propagation
 - Over 90% of our predictions for multi-node failures do not succeed in discovering all the nodes in the fail set

- Locations on Blue Waters:
 - c2-1c2s2n0
 - For multi-nodes that are incorrectly predicted
 - Predict the slot/cage/cabinet

Location propagation

Figure 9. Location propagation results

Location propagation

- c2-1c12s2n0
 - 4 nodes in one slot
 - 8 slots in one cage(32 nodes)
 - 3 cages in one cabinet (96 nodes)
- Over-predicting failing nodes

Topology aware

23x24x24 3D torus network

Total 276 cabinets.

Topology aware

- Reduces the node over-estimation
 - By 15%
 - Future work –better patterns

Application level

- Depending on system usage
- Depending on failure type
 - Crashed nodes do not affect jobs

Lead time might be smaller/greater

Blue Waters utilization

237 Cray XE6 and 32 Cray XK7 (12 after August)

Application failure prediction

- Only around 44% of failures lead to at least one application crash.
 - 62% of the failure types predicted lead to application crashes
 - Corresponds to an increase in the recall of 5%
 - 40% when we use topology aware prediction
- Lead time depends on the application type

Application failure prediction

- Luster are the most frequent system failure
 - Only 5-10% lead to app crashes
 - ELSA was unable to predict location
- The first DIMM failure is not predicted
 - Subquential DIMM failures are captured

Unscheduled down time

Table 2. Frequency of Special Characters

Failure type	Percentage	Recall	Application Crashes	Application Crash Recall
Luster MDT Failure	39.6%	7%	5%	0%
Luster OST Failure	16.3%	15%	13%	0%
DIMM Failure	15.7%	38%	11%	58%
Compute Blade	2.9%	62%	21%	64%
PBS Out-of memory	3.6%	44%	0%	0%

Application failure prediction

- Application and system level predictions are different
 - Most of the system failures are seen as performance degradation at the application level
 - Could predict app degradation?

 Better understanding of the topology of the system can increase app failure prediction

Conclusion

- System level prediction
 - Blue Waters is still young
 - Using topology and system information improves the accuracy
- Application level prediction
 - Understanding different error types
 - The recall value is better than for system level

Future work

- Understand app performance degradation
 - Analyzing IO patterns of an application we could predict file system degradation (and failures)
 - GPFS at Argonne
 - App migration on detecting/predicting degradation trade-off
- Increase the current results
 - For both system level and application level prediction

Additional Q&A

Thank you

Ana Gainaru againaru@illinois.edu