A. Calotoiu1 (GRS), T. Hoefler (ETH), M. Poke (GRS), F. Wolf (GRS)

Using Automated Performance Modeling to Find Scalability Bugs in Complex Codes
Latent Scalability Bugs

System size

Execution time
Analytical performance modeling

Disadvantages
- Time consuming
- Danger of overlooking unscalable code

Identify kernels
- Parts of the program that dominate its performance at larger scales
- Identified via small-scale tests and intuition

Create models
- Laborious process
- Still confined to a small community of skilled experts
Scalability bug detector

main() {
 foo()
 bar()
 compute()
}

Instrumentation
- All functions

Performance measurements (profiles)
- $p_1 = 128$
- $p_2 = 256$
- $p_3 = 512$
- $p_4 = 1,024$
- $p_5 = 2,048$
- $p_6 = 4,096$

Ranking:
- Asymptotic
- Target scale p_t

Input

Output
Primary focusing on scaling trend

![Graph showing scaling trend]

Ranking:

1. F_2
2. F_1
3. F_3
Primary focusing on scaling trend

![Graph showing scaling trend with ranking]

Ranking:

1. F_2
2. F_1
3. F_3
Primary focusing on scaling trend

Ranking:

1. F_2
2. F_1
3. F_3
Model building blocks

Computation

LU
\[t(p) \sim c \]

FFT
\[t(p) \sim \log_2(p) \]

Naïve N-body
\[t(p) \sim p \]

Samplesort
\[t(p) \sim p^2 \log_2(p) \]

...
\[t(p) \sim ... \]

Communication

LU
\[t(p) \sim c \]

FFT
\[t(p) \sim c \]

Naïve N-body
\[t(p) \sim p \]

Samplesort
\[t(p) \sim p^2 \]

...
\[t(p) \sim ... \]
Performance model normal form

\[f(p) = \sum_{k=1}^{n} c_k \times p^{i_k} \times \log^j_k(p) \]

\(n = 1 \)
\(I = \{0,1,2\} \)
\(J = \{0,1\} \)
Performance model normal form

\[f(p) = \sum_{k=1}^{n} c_k \times p^{i_k} \times \log_{2}^{j_k}(p) \]

\(n = 2 \)
\(I = \{0, 1, 2\} \)
\(J = \{0, 1\} \)
Requirements modeling

Program

Computation
- FLOPS
- ... (Load)
- Store

Communication
- P2P
- Collective

Disagreement may be indicative of wait states

Time
Workflow

- Statistical quality control
- Kernel refinement
- Performance measurements
- Performance profiles
- Model generation
- Scaling models
- Performance extrapolation
- Ranking of kernels
- Model generation
- Scaling models
- Accuracy saturated?
 - Yes
 - No
- Model refinement
Model refinement

- **Input data**

 \[n = 1; R_0 = \]

- **Hypothesis generation; hypothesis size \(n \)**

 \(c_1 \times p \)

- **Hypothesis evaluation via cross-validation**

 \(c_1 \times p^2 \times \log(p) \)

- **Computation of \(R_n^2 \) for best hypothesis**

 \[R_n^2 = 1 - \frac{\text{residualSumSquares}}{\text{totalSumSquares}} \]

 \[R_n^2 = 1 - (1 - R^2) \cdot \frac{n}{6-n-1} \]

- **Scaling model**

 \[I = \{0,1,2\}; J = \{0,1\}; n_{\text{max}} = 2 \]
Evaluation

\[
I = \{ \frac{0}{2}, \frac{1}{2}, \frac{2}{2}, \frac{3}{2}, \frac{4}{2}, \frac{5}{2}, \frac{6}{2} \}
\]

\[
J = \{0, 1, 2\}
\]

\[n = 5\]
Sweep3D

Solves neutron transport problem
- 3D domain mapped onto 2D process grid
- Parallelism achieved through pipelined wave-front process

LogGP model for communication developed by [1].

\[
t_{\text{comm}} = \left[2(p_x + p_y) - 2 \right] + 4(n_{\text{sweep}} - 1) \times t_{\text{msg}}
\]

\[
t_{\text{comm}} = c \times \sqrt{p}
\]

[1] Hoisie et al.: Performance analysis of wavefront algorithms on very-large scale distributed systems; Workshop on Wide Area Networks and High Performance Computing, 1999
Sweep3D (2)

<table>
<thead>
<tr>
<th>Kernel [2 of 40]</th>
<th>Runtime[%]</th>
<th>Model [s]</th>
<th>Predictive error [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>sweep->MPI_Recv</td>
<td>65.35</td>
<td>4.03\sqrt{p}</td>
<td>5.10</td>
</tr>
<tr>
<td>sweep</td>
<td>20.87</td>
<td>582.19</td>
<td>0.01</td>
</tr>
</tbody>
</table>
MILC

MILC/su3_rmd – code from MILC suite of QCD codes with performance model manually created by [2].

- Time per process should remain constant except for a rather small logarithmic term caused by global convergence checks

<table>
<thead>
<tr>
<th>Kernel [3 of 479]</th>
<th>Model [s] (t = f(p))</th>
<th>Predictive Error [%] (p_t = 64k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>compute_gen_staple_field</td>
<td>(2.40 \times 10^2)</td>
<td>0.43</td>
</tr>
<tr>
<td>g_vecdoublesum(\triangleright)MPI_Allreduce</td>
<td>(6.30 \times 10^{-6} \times \log_2(p))</td>
<td>0.01</td>
</tr>
<tr>
<td>mult_adj_su3_fieldlink_lathwec</td>
<td>(3.80 \times 10^3)</td>
<td>0.04</td>
</tr>
</tbody>
</table>

\[P_i \leq 16k \]

HOMME

Core of the Community Atmospheric Model (CAM)
- Spectral element dynamical core
 on a cubed sphere grid

<table>
<thead>
<tr>
<th>Kernel [3 of 194]</th>
<th>Model [s] t = f(p)</th>
<th>Predictive error [%] p_t = 130k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Box_rearrange->MPI_Reduce</td>
<td>$3.63 \times 10^{-6} p \times \sqrt{p} + 7.21 \times 10^{-13} p^3$</td>
<td>30.34</td>
</tr>
<tr>
<td>Vlaplace_sphere_vk</td>
<td>$24.44 + 2.26 \times 10^{-7} p^2$</td>
<td>4.28</td>
</tr>
<tr>
<td>Compute_and_apply_rhs</td>
<td>49.09</td>
<td>0.83</td>
</tr>
</tbody>
</table>

$$P_i \quad 43k$$

The G8 Research Councils Initiative on Multilateral Research Funding
Interdisciplinary Program on Application Software towards Exascale Computing for Global Scale Issues
HOMME (2)
Mass-producing performance models

- Is feasible
- Offers insight
- Requires low effort
- Improves code coverage

Future work
- Integration into Scalasca
- Strong scaling
- Asymptotic requirements characterization
Acknowledgements

- John Dennis and Rich Loft
 National Center For Atmospheric Research
- Marc-André Hermanns
 German Research School for Simulation Sciences
Cost of first prediction

Assumptions

- Input experiments at scales \(\{2^0, 2^1, 2^2, \ldots, 2^m\} \)
- Target scale at \(2^{m+k} \)
- Application scales perfectly

<table>
<thead>
<tr>
<th>k</th>
<th>Full scale [%]</th>
<th>Input [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td><100</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td><50</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td><25</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td><12.5</td>
</tr>
</tbody>
</table>

Jitter may require more experiments per input scale, but to be conclusive experiments at the target scale would have to be repeated as well.