
Mercury: Enabling Remote Procedure Call for
High-Performance Computing

J. Soumagne, D. Kimpe, J. Zounmevo, M. Chaarawi, Q. Koziol,
A. Afsahi, and R. Ross

The HDF Group, Argonne National Laboratory, Queen’s University

November 26, 2013



RPC and High-Performance Computing

Remote Procedure Call (RPC)

Allow local calls to be transparently executed on remote resources

Already widely used to support distributed services

– Google Protocol Buffers, Facebook Thrift, CORBA, Java RMI, etc.

Typical HPC applications are SPMD
No need for RPC: control flow implicit on all nodes
A series of SPMD programs sequentially produce & analyze data

Distributed HPC workflow
Nodes/systems dedicated to specific task
Multiple SPMD applications/jobs execute concurrently and interact

Importance of RPC growing
Compute nodes with minimal/non-standard environment
Heterogeneous systems (node-specific resources)
More “service-oriented” and more complex applications
Workflows and in-situ instead of sequences of SPMD

2



RPC and High-Performance Computing

Remote Procedure Call (RPC)

Allow local calls to be transparently executed on remote resources

Already widely used to support distributed services

– Google Protocol Buffers, Facebook Thrift, CORBA, Java RMI, etc.

Typical HPC applications are SPMD
No need for RPC: control flow implicit on all nodes
A series of SPMD programs sequentially produce & analyze data

Distributed HPC workflow
Nodes/systems dedicated to specific task
Multiple SPMD applications/jobs execute concurrently and interact

Importance of RPC growing
Compute nodes with minimal/non-standard environment
Heterogeneous systems (node-specific resources)
More “service-oriented” and more complex applications
Workflows and in-situ instead of sequences of SPMD

2



RPC and High-Performance Computing

Remote Procedure Call (RPC)

Allow local calls to be transparently executed on remote resources

Already widely used to support distributed services

– Google Protocol Buffers, Facebook Thrift, CORBA, Java RMI, etc.

Typical HPC applications are SPMD
No need for RPC: control flow implicit on all nodes
A series of SPMD programs sequentially produce & analyze data

Distributed HPC workflow
Nodes/systems dedicated to specific task
Multiple SPMD applications/jobs execute concurrently and interact

Importance of RPC growing
Compute nodes with minimal/non-standard environment
Heterogeneous systems (node-specific resources)
More “service-oriented” and more complex applications
Workflows and in-situ instead of sequences of SPMD

2



RPC and High-Performance Computing

Remote Procedure Call (RPC)

Allow local calls to be transparently executed on remote resources

Already widely used to support distributed services

– Google Protocol Buffers, Facebook Thrift, CORBA, Java RMI, etc.

Typical HPC applications are SPMD
No need for RPC: control flow implicit on all nodes
A series of SPMD programs sequentially produce & analyze data

Distributed HPC workflow
Nodes/systems dedicated to specific task
Multiple SPMD applications/jobs execute concurrently and interact

Importance of RPC growing
Compute nodes with minimal/non-standard environment
Heterogeneous systems (node-specific resources)
More “service-oriented” and more complex applications
Workflows and in-situ instead of sequences of SPMD

2



Mercury

Objective

Create a reusable RPC library for use in HPC that can
serve as a basis for services such as storage systems, I/O
forwarding, analysis frameworks and other forms of
inter-application communication

Why not reuse existing RPC frameworks?

– Do not support efficient large data transfers or asynchronous calls
– Mostly built on top of TCP/IP protocols

I Need support for native transport
I Need to be easy to port to new machines

Similar approaches with some differences

– I/O Forwarding Scalability Layer (IOFSL)
– NEtwork Scalable Service Interface (Nessie)
– Lustre RPC

3



Mercury

Objective

Create a reusable RPC library for use in HPC that can
serve as a basis for services such as storage systems, I/O
forwarding, analysis frameworks and other forms of
inter-application communication

Why not reuse existing RPC frameworks?

– Do not support efficient large data transfers or asynchronous calls
– Mostly built on top of TCP/IP protocols

I Need support for native transport
I Need to be easy to port to new machines

Similar approaches with some differences

– I/O Forwarding Scalability Layer (IOFSL)
– NEtwork Scalable Service Interface (Nessie)
– Lustre RPC

3



Overview

Function arguments / metadata transferred with RPC request
– Two-sided model with unexpected / expected messaging
– Message size limited to a few kilobytes

Bulk data (more later) transferred using separate and dedicated API
– One-sided model that exposes RMA semantics

Network Abstraction Layer
– Allows definition of multiple network plugins
– Two functional plugins MPI (MPI2) and BMI but implement

one-sided over two-sided
– More plugins to come

Client Server

RPC proc

Network Abstraction Layer

RPC proc

Metadata (unexpected
+ expected messaging)

Bulk Data (RMA transfer)

4



Overview

Function arguments / metadata transferred with RPC request
– Two-sided model with unexpected / expected messaging
– Message size limited to a few kilobytes

Bulk data (more later) transferred using separate and dedicated API
– One-sided model that exposes RMA semantics

Network Abstraction Layer
– Allows definition of multiple network plugins
– Two functional plugins MPI (MPI2) and BMI but implement

one-sided over two-sided
– More plugins to come

Client Server

RPC proc

Network Abstraction Layer

RPC proc

Metadata (unexpected
+ expected messaging)

Bulk Data (RMA transfer)

4



Overview

Function arguments / metadata transferred with RPC request
– Two-sided model with unexpected / expected messaging
– Message size limited to a few kilobytes

Bulk data (more later) transferred using separate and dedicated API
– One-sided model that exposes RMA semantics

Network Abstraction Layer
– Allows definition of multiple network plugins
– Two functional plugins MPI (MPI2) and BMI but implement

one-sided over two-sided
– More plugins to come

Client Server

RPC proc

Network Abstraction Layer

RPC proc

Metadata (unexpected
+ expected messaging)

Bulk Data (RMA transfer)

4



Overview

Function arguments / metadata transferred with RPC request
– Two-sided model with unexpected / expected messaging
– Message size limited to a few kilobytes

Bulk data (more later) transferred using separate and dedicated API
– One-sided model that exposes RMA semantics

Network Abstraction Layer
– Allows definition of multiple network plugins
– Two functional plugins MPI (MPI2) and BMI but implement

one-sided over two-sided
– More plugins to come

Client Server

RPC proc

Network Abstraction Layer

RPC proc

Metadata (unexpected
+ expected messaging)

Bulk Data (RMA transfer)

4



Remote Procedure Call
Internal Details: Please forget soon!

Mechanism used to send an RPC request

Client Server

id1 ... idN id1 ... idN

1. Register call
and get request id

1. Register call
and get request id

2. Post unexpected send
with request id and serialized

parameters + Pre-post
receive for server response

2. Post receive for
unexpected request
3. Execute call4. Test completion of

send / receive requests

4. Post send with
serialized response

5



Remote Procedure Call
Internal Details: Please forget soon!

Mechanism used to send an RPC request

Client Server

id1 ... idN id1 ... idN

1. Register call
and get request id

1. Register call
and get request id

2. Post unexpected send
with request id and serialized

parameters + Pre-post
receive for server response

2. Post receive for
unexpected request
3. Execute call4. Test completion of

send / receive requests

4. Post send with
serialized response

5



Remote Procedure Call
Internal Details: Please forget soon!

Mechanism used to send an RPC request

Client Server

id1 ... idN id1 ... idN

1. Register call
and get request id

1. Register call
and get request id

2. Post unexpected send
with request id and serialized

parameters + Pre-post
receive for server response

2. Post receive for
unexpected request

3. Execute call4. Test completion of
send / receive requests

4. Post send with
serialized response

5



Remote Procedure Call
Internal Details: Please forget soon!

Mechanism used to send an RPC request

Client Server

id1 ... idN id1 ... idN

1. Register call
and get request id

1. Register call
and get request id

2. Post unexpected send
with request id and serialized

parameters + Pre-post
receive for server response

2. Post receive for
unexpected request

3. Execute call

4. Test completion of
send / receive requests

4. Post send with
serialized response

5



Remote Procedure Call
Internal Details: Please forget soon!

Mechanism used to send an RPC request

Client Server

id1 ... idN id1 ... idN

1. Register call
and get request id

1. Register call
and get request id

2. Post unexpected send
with request id and serialized

parameters + Pre-post
receive for server response

2. Post receive for
unexpected request
3. Execute call

4. Test completion of
send / receive requests

4. Post send with
serialized response

5



Remote Procedure Call: Example Code

Client snippet:
open_in_t in_struct;
open_out_t out_struct;

/* Initialize the interface */
[...]
NA_Addr_lookup(network_class , server_name , &server_addr);

/* Register RPC call */
rpc_id = HG_REGISTER("open", open_in_t , open_out_t);

/* Fill input parameters */
[...]
in_struct.in_param0 = in_param0;

/* Send RPC request */
HG_Forward(server_addr , rpc_id , &in_struct , &out_struct ,

&rpc_request);

/* Wait for completion */
HG_Wait(rpc_request , HG_MAX_IDLE_TIME , HG_STATUS_IGNORE);

/* Get output parameters */
[...]
out_param0 = out_struct.out_param0;

6



Remote Procedure Call: Example Code

Server snippet (main loop):

int main(int argc , void *argv [])
{

/* Initialize the interface */
[...]

/* Register RPC call */
HG_HANDLER_REGISTER("open", open_rpc , open_in_t ,

open_out_t);

/* Process RPC calls */
while (! finalized) {

HG_Handler_process(timeout , HG_STATUS_IGNORE);
}

/* Finalize the interface */
[...]

}

7



Remote Procedure Call: Example Code

Server snippet (RPC callback):

int open_rpc(hg_handle_t handle)
{

open_in_t in_struct;
open_out_t out_struct;

/* Get input parameters and bulk handle */
HG_Handler_get_input(handle , &in_struct);
[...]
in_param0 = in_struct.in_param0;

/* Execute call */
out_param0 = open(in_param0 , ...);

/* Fill output structure */
open_out_struct.out_param0 = out_param0;

/* Send response back */
HG_Handler_start_output(handle , &out_struct);

return HG_SUCCESS;
}

8



Bulk Data Transfers

Definition

Bulk Data: Variable length data that is (or could be) too large to send
eagerly and might need special processing.

Transfer controlled by server (better flow control)
Memory buffer(s) abstracted by handle
handles must be serialized and exchanged using other means

Client Server

1. Register local memory
segment and get handle

1. Register local memory
segment and get handle

2. Send serialized
memory handle

3. Post put/get opera-
tion using local/deseri-
alized remote handles 4. Test completion

of remote put/get

9



Bulk Data Transfers

Definition

Bulk Data: Variable length data that is (or could be) too large to send
eagerly and might need special processing.

Transfer controlled by server (better flow control)
Memory buffer(s) abstracted by handle
handles must be serialized and exchanged using other means

Client Server

1. Register local memory
segment and get handle

1. Register local memory
segment and get handle

2. Send serialized
memory handle

3. Post put/get opera-
tion using local/deseri-
alized remote handles 4. Test completion

of remote put/get

9



Bulk Data Transfers

Definition

Bulk Data: Variable length data that is (or could be) too large to send
eagerly and might need special processing.

Transfer controlled by server (better flow control)
Memory buffer(s) abstracted by handle
handles must be serialized and exchanged using other means

Client Server

1. Register local memory
segment and get handle

1. Register local memory
segment and get handle

2. Send serialized
memory handle

3. Post put/get opera-
tion using local/deseri-
alized remote handles 4. Test completion

of remote put/get

9



Bulk Data Transfers

Definition

Bulk Data: Variable length data that is (or could be) too large to send
eagerly and might need special processing.

Transfer controlled by server (better flow control)
Memory buffer(s) abstracted by handle
handles must be serialized and exchanged using other means

Client Server

1. Register local memory
segment and get handle

1. Register local memory
segment and get handle

2. Send serialized
memory handle

3. Post put/get opera-
tion using local/deseri-
alized remote handles

4. Test completion
of remote put/get

9



Bulk Data Transfers

Definition

Bulk Data: Variable length data that is (or could be) too large to send
eagerly and might need special processing.

Transfer controlled by server (better flow control)
Memory buffer(s) abstracted by handle
handles must be serialized and exchanged using other means

Client Server

1. Register local memory
segment and get handle

1. Register local memory
segment and get handle

2. Send serialized
memory handle

3. Post put/get opera-
tion using local/deseri-
alized remote handles 4. Test completion

of remote put/get

9



Bulk Data Transfers: Example

Client snippet (contiguous):
Note: no client changes

/* Initialize the interface */
[...]
/* Register RPC call */
rpc_id = HG_REGISTER("write", write_in_t , write_out_t);

/* Create bulk handle */
HG_Bulk_handle_create(buf , buf_size ,

HG_BULK_READ_ONLY , &bulk_handle);

/* Attach bulk handle to input parameters */
[...]
in_struct.bulk_handle = bulk_handle;

/* Send RPC request */
HG_Forward(server_addr , rpc_id , &in_struct , &out_struct ,

&rpc_request);

/* Wait for completion */
HG_Wait(rpc_request , HG_MAX_IDLE_TIME , HG_STATUS_IGNORE);

10



Bulk Data Transfers: Example

Server snippet (RPC callback):

/* Get input parameters and bulk handle */
HG_Handler_get_input(handle , &in_struct);
[...]
bulk_handle = in_struct.bulk_handle;

/* Get size of data and allocate buffer */
nbytes = HG_Bulk_handle_get_size(bulk_handle);
buf = malloc(nbytes);

/* Create block handle to read data */
HG_Bulk_block_handle_create(buf , nbytes ,

HG_BULK_READWRITE , &bulk_block_handle);

/* Start reading bulk data */
HG_Bulk_read_all(client_addr , bulk_handle ,

bulk_block_handle , &bulk_request);

/* Wait for completion */
HG_Bulk_wait(bulk_request ,

HG_MAX_IDLE_TIME , HG_STATUS_IGNORE);

11



Non-contiguous Bulk Data Transfers

Non contiguous memory is registered through bulk data interface...

int HG_Bulk_handle_create_segments(
hg_bulk_segment_t *bulk_segments ,
size_t segment_count ,
unsigned long flags ,
hg_bulk_t *handle);

...which maps to network abstraction layer if plugin supports it...

int NA_Mem_register_segments(na_class_t *network_class ,
na_segment_t *segments ,
na_size_t segment_count ,
unsigned long flags ,
na_mem_handle_t *mem_handle);

...otherwise several na mem handle t created and hg bulk t may
therefore have a variable size

– If serialized hg bulk t too large, use bulk data API to register
memory and pull memory descriptors from server

– In both cases, origin unaware of target memory layout

12



Non-contiguous Bulk Data Transfers: API

Non-blocking read

int HG_Bulk_read(na_addr_t addr ,
hg_bulk_t bulk_handle ,
size_t bulk_offset ,
hg_bulk_block_t block_handle ,
size_t block_offset ,
size_t block_size ,
hg_bulk_request_t *bulk_request);

Non-blocking write

int HG_Bulk_write(na_addr_t addr ,
hg_bulk_t bulk_handle ,
size_t bulk_offset ,
hg_bulk_block_t block_handle ,
size_t block_offset ,
size_t block_size ,
hg_bulk_request_t *bulk_request);

13



Non-contiguous Bulk Data Transfers: Example

Client snippet:

/* Initialize the interface */
[...]
/* Register RPC call */
rpc_id = HG_REGISTER("write", write_in_t , write_out_t);

/* Provide data layout information */
for (i = 0; i < BULK_NX ; i++) {

segments[i]. address = buf[i];
segments[i].size = BULK_NY * sizeof(int);

}

/* Create bulk handle with segment info */
HG_Bulk_handle_create_segments(segments , BULK_NX ,

HG_BULK_READ_ONLY , &bulk_handle);

/* Attach bulk handle to input parameters */
[...]
in_struct.bulk_handle = bulk_handle;

/* Send RPC request */
HG_Forward(server_addr , rpc_id , &in_struct , &out_struct ,

&rpc_request);

14



Non-contiguous Bulk Data Transfers: Example

Server snippet:

/* Get input parameters and bulk handle */
HG_Handler_get_input(handle , &in_struct);
[...]
bulk_handle = in_struct.bulk_handle;

/* Get size of data and allocate buffer */
nbytes = HG_Bulk_handle_get_size(bulk_handle);
buf = malloc(nbytes);

/* Create block handle to read data */
HG_Bulk_block_handle_create(buf , nbytes ,

HG_BULK_READWRITE , &bulk_block_handle);

/* Start reading bulk data */
HG_Bulk_read_all(client_addr , bulk_handle ,

bulk_block_handle , &bulk_request);

/* Wait for completion */
HG_Bulk_wait(bulk_request ,

HG_MAX_IDLE_TIME , HG_STATUS_IGNORE);

15



Fine-grained Transfers

Two issues with previous example

1. Server memory size is limited
2. Server waits for all the data to arrive before writing

I Makes us pay the latency of an entire RMA read

Solution
– Pipeline transfers and overlap communication / execution

I Transfers can complete while writing / executing the RPC call

Data buffer (nbytes)

0 1 2 31 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2E 1E E

16



Fine-grained Transfers

Two issues with previous example

1. Server memory size is limited
2. Server waits for all the data to arrive before writing

I Makes us pay the latency of an entire RMA read

Solution
– Pipeline transfers and overlap communication / execution

I Transfers can complete while writing / executing the RPC call

Data buffer (nbytes)

0 1 2 31 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2E 1E E

16



Fine-grained Transfers

Two issues with previous example

1. Server memory size is limited
2. Server waits for all the data to arrive before writing

I Makes us pay the latency of an entire RMA read

Solution
– Pipeline transfers and overlap communication / execution

I Transfers can complete while writing / executing the RPC call

Data buffer (nbytes)

0 1 2 31 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2E 1E E

16



Fine-grained Transfers

Two issues with previous example

1. Server memory size is limited
2. Server waits for all the data to arrive before writing

I Makes us pay the latency of an entire RMA read

Solution
– Pipeline transfers and overlap communication / execution

I Transfers can complete while writing / executing the RPC call

Data buffer (nbytes)

0 1 2 31 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2E 1E E

16



Fine-grained Transfers

Two issues with previous example

1. Server memory size is limited
2. Server waits for all the data to arrive before writing

I Makes us pay the latency of an entire RMA read

Solution
– Pipeline transfers and overlap communication / execution

I Transfers can complete while writing / executing the RPC call

Data buffer (nbytes)

0 1 2 31 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2E 1E E

16



Fine-grained Transfers

Two issues with previous example

1. Server memory size is limited
2. Server waits for all the data to arrive before writing

I Makes us pay the latency of an entire RMA read

Solution
– Pipeline transfers and overlap communication / execution

I Transfers can complete while writing / executing the RPC call

Data buffer (nbytes)

0 1 2 31 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2E 1E E

16



Fine-grained Transfers

Two issues with previous example

1. Server memory size is limited
2. Server waits for all the data to arrive before writing

I Makes us pay the latency of an entire RMA read

Solution
– Pipeline transfers and overlap communication / execution

I Transfers can complete while writing / executing the RPC call

Data buffer (nbytes)

0 1 2 31 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2E 1E E

16



Fine-grained Transfers

Two issues with previous example

1. Server memory size is limited
2. Server waits for all the data to arrive before writing

I Makes us pay the latency of an entire RMA read

Solution
– Pipeline transfers and overlap communication / execution

I Transfers can complete while writing / executing the RPC call

Data buffer (nbytes)

0 1 2 31 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2E 1E E

16



Fine-grained Transfers

Two issues with previous example

1. Server memory size is limited
2. Server waits for all the data to arrive before writing

I Makes us pay the latency of an entire RMA read

Solution
– Pipeline transfers and overlap communication / execution

I Transfers can complete while writing / executing the RPC call

Data buffer (nbytes)

0 1 2 31 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2E 1E E

16



Fine-grained Transfers

Two issues with previous example

1. Server memory size is limited
2. Server waits for all the data to arrive before writing

I Makes us pay the latency of an entire RMA read

Solution
– Pipeline transfers and overlap communication / execution

I Transfers can complete while writing / executing the RPC call

Data buffer (nbytes)

0 1 2 31 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2E 1E E

16



Fine-grained Transfers

Two issues with previous example

1. Server memory size is limited
2. Server waits for all the data to arrive before writing

I Makes us pay the latency of an entire RMA read

Solution
– Pipeline transfers and overlap communication / execution

I Transfers can complete while writing / executing the RPC call

Data buffer (nbytes)

0 1 2 3

1 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2E 1E E

16



Fine-grained Transfers

Two issues with previous example

1. Server memory size is limited
2. Server waits for all the data to arrive before writing

I Makes us pay the latency of an entire RMA read

Solution
– Pipeline transfers and overlap communication / execution

I Transfers can complete while writing / executing the RPC call

Data buffer (nbytes)

0 1 2 3

1 2 3W

1 2 3E 1 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2E 1E E

16



Fine-grained Transfers

Two issues with previous example

1. Server memory size is limited
2. Server waits for all the data to arrive before writing

I Makes us pay the latency of an entire RMA read

Solution
– Pipeline transfers and overlap communication / execution

I Transfers can complete while writing / executing the RPC call

Data buffer (nbytes)

0 1 2 31 2 3W

1 2 3E

1 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2E 1E E

16



Fine-grained Transfers

Two issues with previous example

1. Server memory size is limited
2. Server waits for all the data to arrive before writing

I Makes us pay the latency of an entire RMA read

Solution
– Pipeline transfers and overlap communication / execution

I Transfers can complete while writing / executing the RPC call

Data buffer (nbytes)

0 1 2 31 2 3W 1 2 3E

1 2 3W

1 2 3E 1 2 3W 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2E 1E E

16



Fine-grained Transfers

Two issues with previous example

1. Server memory size is limited
2. Server waits for all the data to arrive before writing

I Makes us pay the latency of an entire RMA read

Solution
– Pipeline transfers and overlap communication / execution

I Transfers can complete while writing / executing the RPC call

Data buffer (nbytes)

0 1 2 31 2 3W 1 2 3E 1 2 3W

1 2 3E

1 2 3W 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2E 1E E

16



Fine-grained Transfers

Two issues with previous example

1. Server memory size is limited
2. Server waits for all the data to arrive before writing

I Makes us pay the latency of an entire RMA read

Solution
– Pipeline transfers and overlap communication / execution

I Transfers can complete while writing / executing the RPC call

Data buffer (nbytes)

0 1 2 31 2 3W 1 2 3E 1 2 3W 1 2 3E

1 2 3W

1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2E 1E E

16



Fine-grained Transfers

Two issues with previous example

1. Server memory size is limited
2. Server waits for all the data to arrive before writing

I Makes us pay the latency of an entire RMA read

Solution
– Pipeline transfers and overlap communication / execution

I Transfers can complete while writing / executing the RPC call

Data buffer (nbytes)

0 1 2 31 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3W

1 2 3E

1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2E 1E E

16



Fine-grained Transfers

Two issues with previous example

1. Server memory size is limited
2. Server waits for all the data to arrive before writing

I Makes us pay the latency of an entire RMA read

Solution
– Pipeline transfers and overlap communication / execution

I Transfers can complete while writing / executing the RPC call

Data buffer (nbytes)

0 1 2 31 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3W 1 2 3E

1 2 3E

1 2 3E 1 2 3E 1 2 3E 1 2E 1E E

16



Fine-grained Transfers

Two issues with previous example

1. Server memory size is limited
2. Server waits for all the data to arrive before writing

I Makes us pay the latency of an entire RMA read

Solution
– Pipeline transfers and overlap communication / execution

I Transfers can complete while writing / executing the RPC call

Data buffer (nbytes)

0 1 2 31 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3E

1 2 3E

1 2 3E 1 2 3E 1 2E 1E E

16



Fine-grained Transfers

Two issues with previous example

1. Server memory size is limited
2. Server waits for all the data to arrive before writing

I Makes us pay the latency of an entire RMA read

Solution
– Pipeline transfers and overlap communication / execution

I Transfers can complete while writing / executing the RPC call

Data buffer (nbytes)

0 1 2 31 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3E 1 2 3E

1 2 3E

1 2 3E 1 2E 1E E

16



Fine-grained Transfers

Two issues with previous example

1. Server memory size is limited
2. Server waits for all the data to arrive before writing

I Makes us pay the latency of an entire RMA read

Solution
– Pipeline transfers and overlap communication / execution

I Transfers can complete while writing / executing the RPC call

Data buffer (nbytes)

0 1 2 31 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3E 1 2 3E 1 2 3E

1 2 3E

1 2E 1E E

16



Fine-grained Transfers

Two issues with previous example

1. Server memory size is limited
2. Server waits for all the data to arrive before writing

I Makes us pay the latency of an entire RMA read

Solution
– Pipeline transfers and overlap communication / execution

I Transfers can complete while writing / executing the RPC call

Data buffer (nbytes)

0 1 2 31 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2 3E

1 2E

1E E

16



Fine-grained Transfers

Two issues with previous example

1. Server memory size is limited
2. Server waits for all the data to arrive before writing

I Makes us pay the latency of an entire RMA read

Solution
– Pipeline transfers and overlap communication / execution

I Transfers can complete while writing / executing the RPC call

Data buffer (nbytes)

0 1 2 31 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2E

1E

E

16



Fine-grained Transfers

Two issues with previous example

1. Server memory size is limited
2. Server waits for all the data to arrive before writing

I Makes us pay the latency of an entire RMA read

Solution
– Pipeline transfers and overlap communication / execution

I Transfers can complete while writing / executing the RPC call

Data buffer (nbytes)

0 1 2 31 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2E 1E

E

16



Fine-grained Transfers

Two issues with previous example

1. Server memory size is limited
2. Server waits for all the data to arrive before writing

I Makes us pay the latency of an entire RMA read

Solution
– Pipeline transfers and overlap communication / execution

I Transfers can complete while writing / executing the RPC call

Data buffer (nbytes)

0 1 2 31 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2E 1E E

16



Performance Evaluation

Scalability / aggregate bandwidth of RPC requests to single server
with bulk data transfer (QDR 4X Infiniband cluster)

0

1000

2000

3000

4000

5000

6000

2 4 8 16 32 64 128 256

A
g
g
re
g
a
te

b
a
n
d
w
id
th

(M
B
/
s)

Number of client processes

mercury w/ pipelining

mercury w/o pipelining

osu bw max

17



Performance Evaluation

Scalability / aggregate bandwidth of RPC requests to single server
with bulk data transfer (Cray XE6)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

2 4 8 16 32 64 128 256

A
g
g
re
g
a
te

b
a
n
d
w
id
th

(M
B
/
s)

Number of client processes

mercury w/ pipelining

mercury w/o pipelining

osu bw max

18



Performance Evaluation

NULL RPC request execution on Cray XE6

– With XDR encoding: 23 µs
– Without XDR encoding: 20 µs

About 50 000 calls /s

Still working on improving that result

Can depend on server side CPU affinity etc

19



Macros

Generate as much boilerplate code as possible for

– Serialization / deserialization of parameters
– Sending / executing RPC

Single include header file shared between client
and server

Make use of BOOST preprocessor for macro
definition

– Generate serialization / deserialization functions
and structure that contains parameters

20



Macros: Serialization / Deserialization

MERCURY_GEN_PROC(
open_in_t ,
(( hg_string_t)(path)

)
(( int32_t)(flags))
(( uint32_t)(mode))

)

Macro

MERCURY_GEN_PROC(

struct_type_name ,

fields

)

/* Define open_in_t */
typedef struct {

hg_string_t path;
int32_t flags;
uint32_t mode;

} open_in_t;

/* Define hg_proc_open_in_t */
static inline
int
hg_proc_open_in_t(hg_proc_t proc , void *data)
{

int ret = HG_SUCCESS;
open_in_t *struct_data = (open_in_t *) data;

ret = hg_proc_hg_string_t(proc , &struct_data ->
path);

if (ret != HG_SUCCESS) {
HG_ERROR_DEFAULT("Proc error");
ret = HG_FAIL;
return ret;

}

ret = hg_proc_int32_t(proc , &struct_data ->flags)
;

if (ret != HG_SUCCESS) {
HG_ERROR_DEFAULT("Proc error");
ret = HG_FAIL;
return ret;

}

ret = hg_proc_uint32_t(proc , &struct_data ->mode)
;

if (ret != HG_SUCCESS) {
HG_ERROR_DEFAULT("Proc error");
ret = HG_FAIL;
return ret;

}

return ret;
}

Generated Code

Generates proc
and struct

21



Current and Future Work

Add true RMA capability NA plugins
(ibverbs, DMAPP, SSM, NNTI)

Checksum parameters for data integrity (done)

Support cancel operations of ongoing RPC calls (ongoing)

Change progress model to callback and trigger (done)
(both Mercury and NA)

Optimizations: batches and eager bulk data

Integrate Mercury into other projects

– Mercury POSIX: Forward POSIX calls using dynamic linking
– Triton (done)
– IOFSL
– HDF5 virtual object plugins

22



Where to go next

Mercury project page

http://www.mcs.anl.gov/projects/mercury

Download / Documentation / Source / Mailing-lists

Work supported by
The Exascale FastForward project, LLNS subcontract no. B599860

The Office of Advanced Scientific Computer Research, Office of Science, U.S.
Department of Energy, under Contract DE-AC02-06CH11357

This research was supported by the United States Department of Defense

23

http://www.mcs.anl.gov/projects/mercury

