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Improve numerical simulations precision
→ future exascale supercomputers

Round-off error management at the software level

Objectives:
be able to validate simulation results against errors
build a model for error propagation

Exascale particularities:
High dimension problems
Different algorithms
Possibly non-deterministic behavior
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Round-off errors

0 1 ... 0 1 0 ... 1 1 0 1 0 0 0 1
05263

sign exponent fraction

Limited number of bits to encode reals→ round-off errors
(machine precision u ' 10−16 for 64-bits floating point format)

x y = f (x)

ŷ = f (x + ∆x)

x + ∆x
backward error

forward error

Forward error: error on the result E = |ŷ − y |
Backward error: perturbation in the data ε = ∆x

forward error . condition number × backward error

Higham (2002), Accuracy and stability of numerical algorithms
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LU decomposition

Study round-off error propagation

LU decomposition to solve linear systems in numerical
simulations (e.g. wave equation in depth imaging)

Decompose A ∈ R4×4 into triangular matrices L and U
A = L × U

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 =


1 0 0 0
l21 1 0 0
l31 l32 1 0
l41 l42 l43 1

 ×


u11 u12 u13 u14
0 u22 u23 u24
0 0 u33 u34
0 0 0 u44


︸ ︷︷ ︸

u11 u12 u13 u14
l21 u22 u23 u24
l31 l32 u33 u34
l41 l42 l43 u44
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LU decomposition

LU decomposition algorithm without pivoting (fast and simple)

for i = 1..4 do
for j = i ..4 do

for k = 1..(i − 1) do
t = aik × akj
aij = aij − t

for j = (i + 1)..4 do
for k = 1..(i − 1) do

t = ajk × aki
aji = aji − t

aji = aji/aii

Round-off error propagation and non-determinism – Urbana-Champaign, IL, November 26, 2013 7 / 25



LU decomposition

Instruction level graph for A ∈ R3×3
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LU decomposition

Hierarchical graph

i = 1

i = 2

i = 3

i = 4

A
L
U
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Error propagation

Analytical worst-case bounds

Statistical analysis (CADNA, PRECISE)

Error propagation through partial derivatives

First order approximation of output error Ey :

Ey '
∑

i

δi
∂y
∂δi

with respect to instruction errors δi : x̂i = xi + δi , |δi | ≤ u

Miller & Wrathall (1980), Software for roundoff analysis of matrix
algorithms

Round-off error propagation and non-determinism – Urbana-Champaign, IL, November 26, 2013 10 / 25



Error propagation

Partial derivatives computed using algorithmic differentiation:

∂y
∂δi

=
∏

(a,b)∈P(δi ,y)

∂b
∂a

Instruction error δi quantification for elementary operations
+, −, ×, / (estimation only for the division operator):

s = a + b ⇒ δi = (s − a)− b

→ output error Ey '
∑

i
δi
∂y
∂δi

quantified!

Langlois (2001), Automatic linear correction of rounding errors
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Error propagation

Limitations

First order approximation:
– exact for “linear” algorithms

(multiplication/division by an error-free number→ no
cross-interaction between instruction input errors)

Computational cost:
– derivatives computation
– instruction error estimation
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Experiments

Experiments on Gaussian random matrices
A ∼ N (0, I4) (100,000 samples)

Median output error:
0 0 0 0

4.28 5.42 5.41 5.42
4.28 9.52 11.9 11.9
4.26 9.59 18.7 24.9

× 10−17

Last element error evolution with matrix size:

n
101 102 103

E

10−14

10−12

10−10
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Experiments

Semi-random matrices: A ∼ N (0, I4) except for a11 = 10−10

Median output error:
0 0 0 0

3.86 5.87 5.89 5.86
3.84 9.14 1.35× 1010 1.35× 1010

3.83 9.13 2.62× 1010 4.89× 1010

× 10−17

i = 1

i = 2

i = 3

i = 4

l23, l24, l32, l42

u33, u34, l43

u44

A L
U

Median derivatives ∼ 0.5 but:

∂u33

∂l23
,
∂u33

∂l32
,
∂u34

∂l24
,
∂u34

∂l32
,
∂l43

∂l23
,

∂l43

∂l32
,
∂l43

∂l42
,
∂u44

∂l24
,
∂u44

∂l42
∼ 106
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Impact of non-determinism

Non-determinism in parallel applications
Data may arrive in random order (delays in message
passing between processes)
If data is processed in order of arrival, results can be
non-deterministic because of round-off errors

If message order is not recorded:

f (a,b)

a

b

failure

f (b,a)
checkpoint

b

a

Will we converge to the same solution in the same time?
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1D stencil

Example: 1D Jacobi stencil

x0
1 x0

2 x0
3 x0

4 x0
5 x0

6 x0
7 x0

8 x0
9 x0

10bL bR

10 elements vector X with initial state X 0

and boundary conditions b

At each iteration, xi is updated as the mean of its neighbors:

xn+1
i = f (xn

i−1, x
n
i+1) =

xn
i−1 + xn

i+1

2

→ Markov process: X n+1 = F (X n)

Converges if F is contracting: d(F (A),F (B)) ≤ kd(A,B), k < 1
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1D stencil

Deterministic behavior

initial state X 0

0

5.1015

1016

0 1016

final state X 832

0

5.1015

1016

0 1016
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Non-determinism

Random data order

xn+1
i =

{
f (xn

i−1, x
n
i+1) with probability p

f (xn
i+1, x

n
i−1) with probability (1− p)

Harmless if f is symmetrical

But f can be non-symmetrical in practice because of
round-off errors:

f (a,b) =
a + b

−1 + a− a + 3
'
{

(a + b)/2 when a . 1016

(a + b)/3 otherwise

→ non-deterministic results
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Non-determinism

Non-deterministic behavior

initial state X 0

0

5.1015

1016

0 1016

X 10000 for 10 runs

0

5.1015

1016

0 1016
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Non-determinism

Converges (to a stationary distribution) if the F functions are
contracting in average: E[log(k)] < 0

→ some functions can be non-contracting if their probability
is relatively low

Diaconis, P. & Freedman, D. (1999), Iterated random functions
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Failure recovery

If the i th cell process fails, xn
i is lost and rolls back to the last

checkpoint xn−τ
i → iterations n − τ to n must be recomputed

Result may differ because of data order randomness
→ system restarts from a possibly different state X ′n

xi
checkpoint

failure

recovery
x ′i

If X ′n remains in the same attraction domain as X n

it will converge to the same distribution at the same speed
but number of iterations may vary
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Failure recovery

Recovery

Failure at x500
8 , checkpoint restart from X 400

X 500 before/after recovery

0

5.1015

1016

0 1016

X 1256 y

0

5.1015

1016

0 1016

→ goes back to the same solution after a while here

Round-off error propagation and non-determinism – Urbana-Champaign, IL, November 26, 2013 23 / 25



Conclusion

Run massively parallel numerical simulations on future
exascale supercomputers

Validate simulation results against round-off errors

Error propagation through derivatives

Study other LU decomposition algorithms

Define heuristics for graph exploration

Impact of non-determinism on recovery

No need to log message order under some hypothesis

Study a real test-case
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Round-off error propagation and
non-determinism in parallel applications

vincent.baudoui@gmail.com

Thank you for your attention!
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