Applications Challenges in the XSEDE Environment

John Towns PI and Project Director, XSEDE Director, Collaborative eScience Programs, NCSA jtowns@ncsa.illinois.edu

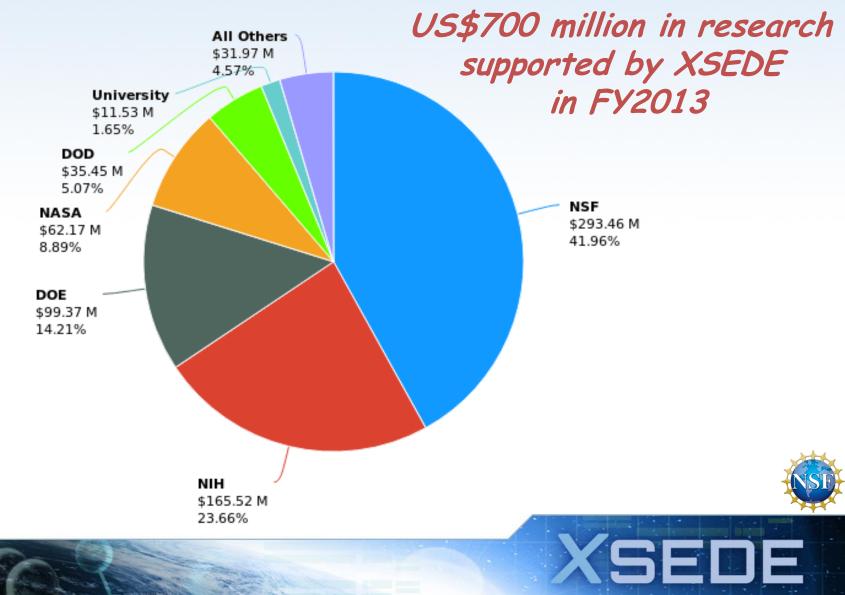
Extreme Science and Engineering Discovery Environment **XSEDE** – accelerating scientific discovery

XSEDE aspires to be **the** place to go to access digital research services.

Accelerate scientific discovery by enhancing the productivity of researchers, engineers, and scholars through the use of advanced digital services and infrastructure.

XSEDE's Strategic Goals

- Deepen and extend the use of the XSEDE ecosystem
 - *deepen* use of XSEDE by existing researchers
 - extend use of XSEDE to new communities
 - prepare the current and next generation via education, training, and outreach
 - raise the general awareness of the value of advanced digital services
- Advance the XSEDE infrastructure
 - create an open and evolving infrastructure
 - enhance the array of technical expertise and support services offered
- *Sustain* the XSEDE infrastructure
 - sustain a reliable and secure infrastructure
 - provide excellent user support services
 - operate an effective and innovative virtual organization



XSEDE is a large and complex project

- 5 year, \$130M project
 - includes \$9M, 5 year Technology Investigation Service
 - separate award from NSF
 - option for additional 5 years of funding upon major review after PY3
- No funding for major hardware
 - coordination, support and creating a national/international eScience infrastructure
 - coordinate allocations, training and documentation for >\$100M of concurrent project awards from NSF
- ~140 FTE (~250 individuals) across 20 partner institutions

Total Research Funding Supported by XSEDE in FY2013

What is XSEDE?

- An ecosystem of advanced digital services
 - support a growing portfolio of resources and services
 - advanced computing, high-end visualization, data analysis, and other resources and services
 - interoperability with other infrastructures
- A virtual organization providing
 - dynamic distributed infrastructure
 - support services, and technical expertise to enable researchers engineers and scholars
 - addressing the most important and challenging problems facing the nation and world
- A project funded by the National Science Foundation

XSEDE offers access to a variety of resources

- Leading-edge distributed memory systems
- Very large shared memory systems
- High throughput systems, including Open Science Grid (OSG)
- Visualization engines
- Accelerators like GPUs and Xeon PHIs

Many scientific problems have components that call for use of more than one architecture.

Current XSEDE Compute Resources

- Stampede @ TACC
 - 9.5 PFLOPS (PF) Dell Cluster w/ GPUs and Xeon PHIs
- Kraken @ NICS
 - 1.2 PF Cray XT5
- Keeneland @ GaTech/NICS
 - 615 TF HP GPU cluster
- Gordon @ SDSC
 - 341 TF Appro Distributed SMP cluster
- Lonestar (4) @ TACC
 - 302 TF Dell Cluster
- Trestles @ SDSC
 - 100 TF Appro Cluster

https://www.xsede.org/web/xup/resource-monitor

SEI

- Blacklight @ PSC
 - 37 TF SGI UV (2 x 16TB shared memory SMP)
- Mason
 - 3.8 TF HP Cluster with large memory nodes (2TB/node)

Current XSEDE Visualization and Data Resources

- Visualization
 - Longhorn @ TACC
 - 20.7 TF Dell/NVIDIA cluster
 - 18.7 TB disk

<u>https://www.xsede.org/web/xup/</u> <u>resource-monitor#advanced_vis_systems</u>

- Storage
 - Ranch @ TACC
 - 40 PB tape
 - HPSS @ NICS
 - 12 PB tape
 - Data Supercell @ PSC
 - 4 PB disk
 - Data Oasis @ SDSC
 - 4 PB tape

<u>https://www.xsede.org/web/xup/</u> <u>resource-monitor#storage_systems</u>

SEI

Challenges/Hinderances (1)

- Memory bandwidth on MIC
 - needed to implement OMP threads on MIC to obtain sufficient memory bandwidth
 - 240 threads per MIC
 - Stride one memory access were critical to good performance
 - induces significant code restructuring in many cases
- Vectorization by compiler was poor
 - compiler was confused by data structures and did not recognized opportunities for vectorization
 - needed to restructure data layout
 - loops with branches also noted as a challenge

Challenges/Hinderances (2)

- Thread affinity
 - by default, threads were poorly located with respect to communications patterns
 - needed to use directives to assign thread distribution
 - best distribution varied by application
- Alignment issues
 - non-aligned vector access have very high overhead
 - compiler did not recognize these and hand directives needed to be inserted

Challenges/Hinderances (3)

- Allocated arrays on MIC are not persistent
 - by default data assigned to offloaded array are not persistent between kernel calls
 - needed to implement conditional array allocation and free-ing functions to avoid overhead of unnecessary data movement
 - this represented significant coding effort
- Splitting computation between CPUs and MICs required to fully utilize system
 - Represents significant effort in balancing the workload and communication requirements

Challenges/Hinderances (4)

- Long expressions difficult to optimize
 - Frequently noted that very long expression do not perform well
 - Need to split these into multiple statements
- Lack of tools!
 - most work guided by manually instrumenting code
 - current tools provide some support, but limited in capability

Challenges/Hinderances (5)

- I/O subsystems inadequately support disparate needs
 - interactive use, e.g. Is -I on a large number of files
 - metadata heavy use, e.g. many file creates
 - I/O server heavy use, e.g. many I/O operations

Filesystem focus on scaling across nodes and not within a node

 effective use of filesystem by a single node requires multiple threads but sill limited by node's connection

- Random I/O very painful
 - often inherent to algorithms used
 - libraries sometime help; more is needed here

Questions?

Our reach will forever exceed our grasp, but, in stretching our horizon, we forever improve our world.

Extreme Science and Engineering Discovery Environment