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Data Scale and Requirements
3000 Mpc/h | 50 Mﬁpc/h

HACC Cosmology Simulation
— 14 Pflops sustained performance on 1.6 Million cores
— 20 PB and counting on Mira
— Checkpoints files are 400TB, and analysis outputs are 10s TB
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Scale and Complexity of Systems

System

Peak Perf
# of Racks

# of cores
Processor

Mem per core
(Flops/byte)

Interconnect

Power

Gflop/watt

Blue Gene/Q

20 PF
96

1,572,864
PowerPC

1GB
4.9

5D Torus

6 MW

3.4

K Computer

11.3 PF
364

705,024
SPARC 64

8 GB
1

6D Torus

12.7 MW

0.19

Tianhe-1A

4.7 PF
112

202,752

Xeon X5670  NVIDIA M2050

1GB 0.21 GB
0.75 3

Fat Tree

4.04 MW

1.2



Storage vs Computation Trends
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FLASH Astrophysics I/0 performance

System Peak 65 GiB/s

IOR benchmark 35 GiB/s

FLASH Checkpoint 1 GiB/s

FLASH Plot files 0.2 GiB/s

During large-scale capability runs, up to 30% of time spent in |/O



Approaches to Address Data Challenges

—Developing novel infrastructures via data staging

and simulation-time analysis
—Leveraging application data models

—Scalable algorithms using reduced synchronization

semantics and topology-aware data movement
—Exploiting data layouts
—Scalable analysis and visualization algorithms

—Work with applications and demonstrate at scale



Data Staging to improve I/0 performance

Intrepid BG/P Compute Resource

Eureka Analysis Cluster

3.2 TB Memory

Myrinet 200 GPUs

40K Nodes ' Switch
160K Cores__ _ Compléx
557 TFlops 900+

ports

Servers

Storage System

Staging enables the application I/0O to be written out
asynchronously while enabling the simulation to proceed
ahead, and helps sink bursty I/O



Data Staging on I/0 Forwarding Nodes (SC’10)
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As we move towards exascale systems consisting of 1000s of

low-power cores, effective I/O scheduling and data staging
mechanisms will be of critical importance (SC’'10)



Traditional Mode Mode with GLEAN

Application

Application

Compute
Resource

|/O Library
(hdf5, pnetcdf)

|/O Library
(hdf5, pnetcdf)

|/O Network

File server
File server

Analysis/Staging Nodes

—> Analysis/Staging/Transformation

——



v g~ -:.. ": '
TS
! ) ==
L QT H
A TH@E
e 0e
P =g
o e Thke
S8 e
1"»..,;« - gl Aggregators in
% “' a pset

s
a

MPI collective I/O has 3 phases:
* Exchange of offsets and sizes using
MPI_Alltoallv over the collective network
* Exchange of data to the aggregators

* Write the data out over the collective network
Designated aggregator node could be in a different pset -
several hops away



Exploiting Topology for I/0 Acceleration

* Aggregator groups formed by
-9 . exploiting the BG/P
o personality information

* Restrict aggregation traffic to

a pset
e Exploit both 3D torus and
i tree network for data
¥ : movement
2

* Dynamic # of aggregators
based on message size



Strong scaling performance to write 1GiB
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Strong scaling is critical as we move towards future
systems with lower memory per core (SC'11)



End-to-end data movement performance
scaling to 131,052 Intrepid cores (32 racks)
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GLEAN sustains 54 GiBps of aggregate throughput at 131,052 cores
(80% of the entire system) with 96 Eureka nodes



Performance for FLASH checkpoints

Weak Scaling Performance for FLASH Checkpoint Strong Scaling Performance for FLASH Checkpoints
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* For weak scaling at 32,768 cores, GLEAN sustains 31 GBps and
achieves an observed speedup of 10-fold over pnetcdf and hdf5

e For strong scaling at 32,768 cores, GLEAN sustains 27 GBps and
achieves an observed speedup of 15-fold over pnetcdf and hdf5

* 16.3 GBps to Storage at 32K cores.
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Scalable I/0 at 768K cores with GLEAN

 Joint work with HACC team
* Scaled to the entire 768K cores of Mira BG/Q system

* Integrated with HACC Cosmology production simulation runs and
enabled the Gordon Bell runs

e Used in production on BG/Q (Mira) and Cray (Hopper)

* Achieved ~180 GB/s for HACC I/O and up to ~16X improvement
over the previous I/O mechanism on Mira

* Written and read ~20 PB of data on Mira (and counting)

* Used for all HACC inputs and outputs of production runs
including particle, cosmo, and halo data

* Parallel lossless data compression with custom pre-conditioner,
and parallel checksums (fletcher64 and crc64)

SC 2013 Gordon Bell Finalist
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Scalable 1/0 using GLEAN for HACC simulations

Write bandwidth in HACC simulations at scale
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* Multi-fold improvement for writing out HACC analysis outputs
e Subfiling, topology-aware data movement, and compression
are key for 1/O performance at scale (PDP’2014)

H. Bui, V. Vishwanath, H. Finkel, K. Harms, J. Leigh, S. Habib, K. Heitmann, M. E. Papka. “Scalable parallel I/O on the Blue Gene/Q
supercomputer using compression, topology-aware data aggregation, and subfiling,” In the Proceedings of the 22nd Euromicro
International Conference on Parallel, Distributed, and Network-Based Processing (PDP 2014), Turin, Italy, February, 2014.



Using Regression Models for 1/0O Tuning (SC’13)
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We Compare Performance of Different
Models On Intrepid and Choose the Best

Error (in %) Error (in %)
Linear Reg 19.6 SVM Reg (Lin) 21.2
Ridge Reg 20.2 Decision Trees 9
Lasso 18.9 SVM Reg (Poly) 16
Lars 20.34 Gaussian Processes 13
Elastic Net 21.68 Random Forests 8.2
SGD 16.7 GBDT 8.1

Tree based Models exhibits least error

Tree-based models are simple and intuitive to understand

The decision at each step (node of the tree) is based on a single parameter of the dataset,
which involves a quick look-up operation along the depth of the tree.

Other models solve a complex optimization problem, making it difficult to judge the relative
usefulness of specific dataset attributes.

Parallel I/O /O Phases Characterization Performance Modeling



Simulation-time Analysis Opportunities on
the Argonne Leadership Computing Facility

Intrepid BG/P Compute Resource

Eureka Analysis Cluster

1
200 GPUs
40K Nodes ' ' 110 TFlops
160K Cores
557 TFlops

128 File
Servers

We need to perform the right computation

at the right place and time taking into Storage System
account the characteristics of the simulation,

resources and analysis



Simulation-time analysis of PHASTA
on 160K Intrepid BG/P cores

v

Isosurface of vertical velocity colored by velocity and cut plane through the
synthetic jet (both on 3.3 Billion element mesh). Image Courtesy: Ken Jansen

Visualization of a PHASTA simulation running on 160K cores of
Intrepid using ParaView on 100 Eureka nodes enabled by GLEAN

GLEAN achieves 48 GiBps sustained throughput for data
movement enabling simulation-time analysis



Database Indexing to Accelerate Queries in HPC

* Indexingis commonly
used to in databases

Original Data Encoded Data :
accelerate search queries.
i Bin Inverted Index Low-order
High-order Low-order i headers (PForD Bytes
bytes bytes i (high-order Compression) . .
RID Value bytes) ——— ¢ |n Data-centric HPC, with

I
3FFF : 851E...

a001! C8F.. indices, a scientist can
4000 BESL.. gy interactively explore the
3FFF : D70A... — 1

dataset. The challenge is
in dealing with index

generation and index sizes
e Data Indexing and Reorganizing for Analytics-induced Query processing
* Scaled to BG/P and Cray XE-6 system
* Demonstrated with FLASH and S3D via GLEAN
( Best paper award at HPDC’13)



Other Relevant Threads

* SKOPE - Language for performance modeling
* Heterogeneous multi-site workflow scheduling
* Modeling end-to-end parallel storage transfers

* HPDF Project — Programmable parallel network and
storage infrastructure for improved performance

* ExaHDF5 Project & Concerted Flows Project
* |/O Optimization on Cray systems

* Scheduling

* Scalable Visualization and Analytics



Relevant Papers

* V. Vishwanath, M. Hereld, V. Morozov, and M. E. Papka, "Topology-aware data movement and staging for /O acceleration on
Blue Gene/P supercomputing systems", In Proceedings of the IEEE/ACM International Conference for High Performance
Computing, Networking, Storage and Analysis (SC 2011), Seattle, USA, November 2011.

* V. Vishwanath, M. Hereld, K. Iskra, D. Kimpe, V. Morozov, M. Papka, R. Ross, and K. Yoshii, “Accelerating I/O Forwarding in
IBM Blue Gene/P Systems", In Proceedings of the IEEE/ACM International Conference for High Performance Computing,
Networking, Storage, and Analysis (SC 2010), pp. 1--10, November 2010.

* V. Vishwanath, M. Hereld, and M. E. Papka, "Simulation-time data analysis and I/O acceleration on leadership-class systems
using GLEAN", In Proceedings of the IEEE Symposium on Large Data Analysis and Visualization (LDAV), Providence, RI, USA,
October 2011.

* M. Rasquin, P. Marion, V. Vishwanath, B. Matthews, M. Hereld, K. Jansen, R. Loy, A. Bauer, M. Zhou, O. Sahni, J. Fu, N. Liu, C.
Carothers, M. Shephard, M. E. Papka, K. Kumaran, B. Geveci,“Co-visualization of full data and in situ data extracts from
unstructured grid CFD at 160K cores”, In Proceedings of the IEEE/ACM International Conference for High Performance
Computing, Networking, Storage and Analysis (SC 2011), Seattle, USA, November 2011.

* S. Lakshminarasimhan, D. A. Boyuka Il, S. V. Pendse, X. Zou, J. Jenkins, V. Vishwanath, M. E. Papka, N. F. Samatova, “Scalable
In Situ Scientific Data Encoding for Analytical Query Processing”, In the proceedings of the 22"d International ACM Symposium
on High Performance Parallel and Distributed Computing (HPDC 2013), New York City, New York, June 2013. [Best Paper
Award]

* E.Schendel, S. Harenberg, H. Tang, V. Vishwanath, M.E. Papka and N. Samatova, “A Generic High-performance Method for
Deinterleaving Scientific Data”, In the 19th International European Conference on Parallel and Distributed Computing
(EuroPar), Aachen, Germany, August 2013.

* S. Habib, V. Morozov, N. Frontiere, H. Finkel, A. Pope, K. Heitmann, K. Kumaran, V. Vishwanath, T. Peterka, J. Insley, D. Daniel,
P. Fasel, Z. Lukic, “HACC: Extreme Scaling and Performance Across Diverse Architectures”, In the Proceedings of the IEEE/ACM
International Conference for High Performance Computing, Networking, Storage and Analysis (SC 2013), Denver, Colorado,
USA, November 2013 (Gordon Bell Finalist).

e H.Bui, V. Vishwanath, H. Finkel, K. Harms, J. Leigh, S. Habib, K. Heitmann, M. E. Papka. “Scalable parallel I/O on the Blue Gene/
Q supercomputer using compression, topology-aware data aggregation, and subfiling,” In the Proceedings of the 22nd
Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP 2014), Turin, Italy, February,
2014.



Thank You




