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Research Context

• HPC-GA project: High-Performance Computing 
for Geophysics Applications;
– European Community’s Seventh Framework 

Programme (FP7) IRSES Marie-Curie project;

– International collaboration: UFRGS, INRIA, BCAM, 
UNAM, and BRGM;

• LICIA – Laboratoire International Associé;
– Joint Computer Science Lab: Grenoble and Porto 

Alegre;

• Collaboration with Urbana as part of my PHD.
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Outline

• Seismic Wave Propagation

• Modeling and Implementation

• Ondes3D

• Porting Ondes3D to AMPI

• Load Balancers with Charm++

• Overdecomposition Evaluation

• Performance Evaluation

• Conclusion
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Seismic Wave PropagationSeismic Wave Propagation
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Seismic wave propagation

Earth’s surface

Seismic Fault 

« SOURCE »

« PROPAGATION »

Wave radiation

« SITE EFFECTS»

Site effects associated 
with strong motion 

Magnitude 6 : average of 10 km < 10 seconds

Regional : tens of km, 20-40 sec
National : hundreds of km > few mins
Global : Earth > several hrs 

Local: few meters, 20-40 sec
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Modeling and ImplementationModeling and Implementation
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Seismic Wave Propagation Models

• Used to predict the consequences of future 
earthquakes;

• Seismic waves are represented by a set of 
elastodynamics equations;
– Solved by implementing the explicit finite 

difference method;
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Elastodynamics equations

v: velocity  field;
σ: stress field;
f:  a known external source force;
ρ:  the material density;
λ and μ: elastic coefficients known as Lamé parameters.
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Boundary Conditions

• The model considers a finite computing 
domain;

• But the physical problem is unbounded;

• The model considers a finite computing 
domain;

• But the physical problem is unbounded;

Physical Domain

Free Surface

Absorbing Boundary

• Need for artificial 
boundary conditions 
to absorb the 
outgoing energy;

• Need for artificial 
boundary conditions 
to absorb the 
outgoing energy;

• Specific set of equations at the edges of the 
three dimensional geometry;

• Specific set of equations at the edges of the 
three dimensional geometry;
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Absorbing condition: C-PML

• ABC →  C-PML  method (Berenger 1995, Komatitsch 2007) ;

– Variable CPU cost (incidence angle).

Free Surface

Physical Domain

Absorbing boundaries

1

ε

1.5 to 3
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Parallel implementation

• The domain is represented by a three 
dimensional grid;

• 2D Cartesian decomposition;

• Problem: Boundary condition causes 
unbalanced load;
– Tasks at the borders perform more computation;

• Other sources of load imbalance:
– Variation in the constitution laws of different 

geological layers;

– Wave propagation.
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Ondes3DOndes3D
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Ondes3D

• Ondes3D is a seismic wave propagation 
simulator;

• Developed by BRGM;

• Follows the implementation scheme from the 
previous slides;

• Our work is based on an MPI Implementation;
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Ondes3D: MPI Implementation

• Communication/Computation overlap:
– Compute the points in the borders of the 

subdomain;

– Send the borders to neighbor subdomains;
• Using non-blocking communication;

– Compute the center of the subdomain.

• Boundary Condition: Convolutional Perfectly 
Matched Layer (C-PML);

• Standard thickness of 10 grid points.
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Load Imbalance with MPI
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Figure: Load distribution of Ondes3D with a 4x4 decomposition

• Results for an execution of the MPI implementation;
–72 million grid points;

• The data was analyzed with TAU.
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Previous attempts

• The MPI implementation is unbalanced;

• Previous attempts to solve the problem:
– mesh partitioning techniques;

– quasi-static load balancing algorithm based on 
zone costs;

• Problem: difficulties to accurately predict the 
execution time of various parts of the program:
– cache effects;

– arithmetic considerations;

– compiler behavior.



27 Nov 2013 Rafael Keller Tesser - JLPC Workshop 17

Proposal

Evaluate the use of dynamic load balancing to 
improve the performance of Ondes3D.

• Port of Ondes3D to AMPI:
– A mature dynamic load-balancing infrastructure;

• Domain overdecomposition (virtual processors);
• Migration;

– MPI-like programming model;
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Proposal

• Evaluation of the performance of the AMPI 
version;
– Compared to the MPI implementation;

– Four load balancers distributed with Charm++;

– Two topology aware load balancers: NucoLB and 
HwTopoLB;
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Port to AMPIPort to AMPI
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Port of Ondes3D to AMPI

• Virtual processors support:
– Removal of global an static variables;

• due to the use of user-level threads in place of 
processes;
• Fortunately, most global variables in Ondes3D are 

constants;
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MPI_Migrate

• Support to process migration:
– Implementation of functions for data serialization;

• PUP functions: Packing and Unpacking;

– Destruction and creation of MPI_Request variables;

– Register the Pack and Unpacking function 
(MPI_Register);

– Call MPI_Migrate() every N time-steps:
• N is defined at compiling time.
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EvaluationEvaluation
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Hardware Description

• Cluster Adonis from Grenoble (Grid'5000);

• CPU: Intel Xeon E5520 (Nehalem), 2. 27 GHz:

• 4 cores x 2 CPUs x 8 nodes = 64 cores

• Last level cache: 8 MB;Memory: 24 GB;

• InfiniBand 40G (Mellanox ConnectX IB 4X QDR 
MT26428).
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Simulation

• Based on Mw6.6, 2007 Niigata Chuetsu-Oki, 
Japan, earthquake (Aochi et.al ICCS 2013) ;
– Full problem (6000 time steps) → 162 minutes on 

32 nodes (Intel Hapertown processors).

• Resolution : 122  million of grid points;
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Overdecomposition EvaluationOverdecomposition Evaluation
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Overdecomposition evaluation:
MPI vs. AMPI
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Overdecomposition evaluation:
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Overdecomposition evaluation:
MPI vs. AMPI
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Overdecomposition evaluation:
MPI vs. AMPI
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Overdecomposition evaluation:
MPI vs. AMPI
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8 nodes, 64 cores, 100 time-steps

Low overhead compared to our best MPI result.



31

Performance EvaluationPerformance Evaluation
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Usage profile with AMPI
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Figure: Processor usage profile of Ondes3D with one process per core

•  For the period from 25s to 75s of a 103s execution;
• 100 time steps
• 122 million grid points;
• Average usage among all processes: 81.72%.
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Load Balancers

• These are the load balancers we used in the 
experiments:
– GreedyLB: 

• aggressive scheduling decisions;
• It is a greedy algorithm that uses only VPs loads for its 

decisions;
• iteratively maps the virtual processor with the biggest 

load to the least loaded core;

– GreedyCommLB:
• includes communication loads;
• Instead of simply mapping the VP with the biggest load 

to the least loaded core to map, it considers all other 
cores that have VPs that communicate with it;
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Load Balancers (cont.)

– RefineLB:
• tries to improve load balance by incrementally 

adjusting the current scheduling;
• checks all possible VP migrations from the most 

loaded core to cores below the average load;
• migrates the VP that leaves its new core the closest to 

the average;
• less migrations than GreedyLB and GreedyCommLB;

– RefineCommLB:
• adds communications costs to RefineLB;
• considers that a communication overhead is present 

whenever a VP is mapped to a different core than the 
ones that contain VPs that it communicates with.
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Load Balancers (cont.)

– NucoLB*:
• Developed for parallel platforms with non-uniform 

levels in their topologies (mainly NUMA nodes);
• Assigns the VP with the largest load to the core that 

presents the smallest cost;
• The cost is related to:

–  the current load on the core;
–  the communication cost of mapping such VP to it;

* L. L. Pilla, C. P. Ribeiro, D. Cordeiro, C. Mei, A. Bhatele, P. O. A. Navaux, F. 
Broquedis,  J. Méhaut, and L. V. Kale “A Hierarchical Approach for Load Balancing 
on Parallel Multi-core Systems”, ICPP 2012
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Load Balancers (cont.)

– HwTopoLB*:
• Trade-off: map a VP to a more underutilized core or 

mapping it closer to the other VPs it communicates 
with;
• considers the whole machine topology:

– caches, memory and network;
– chooses a core and a VP that is assigned to it; 
– evaluates all possible mappings;
– chooses the one that has the highest probability of 

minimizing the makespan;

• proven to asymptotically converge to an optimal 
solution. 

* L. L. Pilla, C. P. Ribeiro, P. Coucheney, F. Broquedis, B. Gaujal, P. O. A. Navaux, and 
J.-F. Méhaut, “A Topology-Aware Load Balancing Algorithm for Clustered Hierarchical 
Multi-Core Machines,” Future Generation Computer Systems, 2013.
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100 time-steps
Average execution times

*With 95% confidence intervals.
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100 time-steps
Average execution times
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100 time-steps
Average execution times

Very small performance gain.

-2.94%
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500 time-steps
Average execution times

*With 95% confidence intervals.
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500 time-steps
Average execution times
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500 time-steps
Average execution times

-18.19%
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500 time-steps
Average execution times

Up to 23.85% improvement.

-23.85%
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Average and Maximum VP Loads
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Average and Maximum VP Loads
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• The LB was able to maintain the maximum load close to the average;
• Even when the unbalanced load presented significant variation.
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ConclusionConclusion
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Conclusion

• Load balancing is a real problem in the simulation 
of seismic wave propagation;

• Dynamic load-balancing with AMPI:
– Up to 23.85% performance gain;

– Load-balancer keeps the maximum load closer to 
the average;

– Bonus: maintain a familiar programming model.
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Future Work

• Ondes3D: 
– Larger scale;

– Higher resolution;

– Tune the frequency of load balancing calls;

– Run a full simulation (6000 time-steps);

– Tests with different simulations;

– Instrumentation for simulation with BigSim;
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Future Work

• GPU integration: 
– We are currently testing a GPU implementation on 

Tesla K20;
• Still need to optimize the code for the architecture;

– If possible, we intend to integrate the GPU kernels 
with our AMPI code.
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Thank you!
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