
Accelerating incompressible fluid flow
simulations on hybrid CPU/GPU systems

26th, Nov 2013

Yushan Wang1, Marc Baboulin1,2, Karl Rupp3,4,
Yann Fraigneau1,5, Olivier Le Maître1,5

1 Université Paris-Sud, France
2 INRIA, France
3 Argonne National Laboratory, USA
4 Vienna University of Technology, Austria
5 LIMSI-CNRS, France

Laboratoire de Recherche en Informatique (LRI)
2	
�

The main research areas addressed by
ParSys include high-performance
computing, distributed algorithms,
compilation and code optimization.	
�

Founded more than 30
years ago, LRI has now
over 260 members,
including 105 faculty
and staff and 90 Ph.D.
students.	
�

Outline

¨  Introduction to Navier-Stokes equations
¤  Helmholtz-like equations

¤  Poisson equation

¨  Hybrid model and performance on a multicore + GPU
architecture

¨  Conclusion and future work

3	
�

Navier-Stokes equations	
�
4	
�

¨  The incompressible NS equations are the fundamental bases of
many CFD problems.	
�

A million dollars in cash awaits
anyone who can develop a
rigorous mathematical model
for how fluids flow.

-- Clay Mathematics Institute

¨ 

¨  Density is neglected because the problem is supposed to be

with constant coefficient.

¨  Reynolds number indicates the fluid state. Larger
demands finer mesh discretization.

¨  Non-linear convection term can be simplified as
for incompressible fluid flow.

	
�

Incompressible Navier-Stokes equations	
�
5	
�

∂

V
∂t

+∇⋅ (

V ⊗


VT) = −∇P + 1

Re
Δ

V

'

(
)

*
) ∇⋅


V = 0

∇⋅ (

V ⊗


VT) (


V ⋅∇)


V

Re Re

Solving NS equations with a prediction-projection
method	
�

6	
�

¨  Hodge-Helmholtz decomposition:
¨ 

u  Y. Wang, M. Baboulin, J. Dongarra, J. Falcou, Y. Fraigneau, O. Le Maître

 A Parallel Solver for Incompressible Fluid Flows. ICCS 2013: 439-448.

	
�


V * =


Vdiv=0 +∇φ

Helmholtz-like
equation	
�

Poisson equation	
�

Time increments	
�

φ(

V n,Pn)


V * (


V n+1,Pn+1)

(I − 2Δt
3Re

Δ)(

V * −


V n) =


S

Δφ =
3
2Δt

∇⋅

V *


V n+1 =


V * −

2Δt
3
∇φ

Pn+1 = Pn +φ −
1
Re

∇⋅

V *

Solving Helmholtz-like equation	
�
7	
�

¨ 
¨  Alternating Direction Implicit method:

¨  System of 3 Helmholtz-like equations:

¨  Thomas algorithm
¨  Matrix transpose: reordering

(I −αΔ) = (I −αΔ x)(I −αΔ y)(I −αΔz)+ο(α
2)

(I − 2Δt
3Re

Δ)(

Vi
* −

Vi

n) =

Si i ∈ {x, y, z}

(I − 2Δt
3Re

Δ x) #T =

Si

(I − 2Δt
3Re

Δ y) ##T = #T

(I − 2Δt
3Re

Δz)(

Vi
* −

Vi

n) = ##T

$

%

&
&
&

'

&
&
&

Tridiagonal systems	
�

Solving Helmholtz-like equation	
�
8	
�

¨ 
¨  is a tridiagonal block matrix.

¨  For certain cases, can by considered as a smaller system
with multiple RHS.

¨  Two methods available:
¤  Thomas algorithm: Gaussian elimination without pivoting.
¤  Explicit inverse of è .	
�

Bij
−1 =

(−1)i+ j cici+1...cj−1θi−1φ j+1 /θn,

θi−1φi+1 /θn,

(−1)i+ j a j+1aj+2...aiθ j−1φi+1 /θn,

"

#
$$

%
$
$

i > j,
i = j,
i > j.

θi = biθi−1 − ci−1aiθi−2, i = 2,...,m,

φi = biφi+1 − ciai+1φi+2, i =m−1,...,1,

θ0 =1, θ1 = b1,

φm+1 =1, φm = bm,

Bx = f .
B B = [ai,bi,ci]i=1,...,m

Bx = f

B x = B−1 f

Solving Helmholtz-like equation	
�
9	
�

u(x)−αΔu(x) = f (x),#
$
%

&% u(x) = 0,
x ∈Ω = (0,1)3,
x ∈∂Ω,

f (x) = (1+3απ 2)u(x), α =107,
u(x) = sin(π x1)sin(π x2)sin(π x3).

Using the explicit inverse of B gains a
factor of 4 over the Thomas algorithm,
while the accuracy is the same.

However, the application of the explicit inverse is limited:
only problems with no immerged body, and with same
boundary conditions, etc. 	
�

Solving Poisson equation	
�
10	
�

¨ 
¨  Partial diagonalization:

¨  Thomas algorithm
¨  Matrix transpose: reordering
¨  Most time-consuming part is the matrix-matrix multiplication.

¤  Using GPU to accelerate.
¤  MAGMA: Matrix Algebra on GPU and Multicore Architectures.

Δφ =
3
2Δt

∇⋅

V * = S

Δ = Δ x +Δ y +Δz

Δ x =QxΛ xQx
−1

Δ y =QyΛ yQy
−1

$S =Qx
−1Qy

−1S

$φ =Qx
−1Qy

−1φ

%

&

'
''

(

'
'
'

(Λ x +Λ y +Δz) #φ = #S

Tridiagonal system	
�

CPU vs. GPU on Helmholtz and Poisson problems	
�
11	
�

Problem size = 2563 	
� Helmholtz
(with B-1)	
�

Poisson	
�

Transfer CPU è GPU	
� 102	
� 148	
�

Matrix multiplication	
� 261	
� 116	
�

Solution reordering	
� 162	
� 108	
�

Tridiagonal system solve	
� -	
� 185	
�

Total GPU solver	
� 423	
� 409	
�

Total CPU solver* (12 MPI processes)	
� 1813	
� 1700	
�

Acceleration	
� x4.3	
� x4.2	
�

2 Inter Xeon E5645 è 12 cores in total.
2 NVIDIA Tesla C2075.	
�

SUNFLUIDH	
�
12	
�

¨  Navier-Stokes solver developed at LIMSI (Laboratoire
d’Informatique pour la Mécanique et les Sciences de l’Ingénieur)

¨  3D simulation of unsteady incompressible flow or low Mach
number flow.
¤  Forced convection flow
¤  Thermal convection flow
¤  Multispecies flow
¤  Reactive flow

¨  The base frame of our current work.
¨  More information on http://perso.limsi.fr/yann/ .

Hybrid model of our NS solver	
�
13	
�

¨  Domain is divided equally into
subdomains.

¨  One subdomain corresponds to one

MPI process.

¨  Each process is associated to one

GPU acceleration.

¨  Multi-threading techniques are

applied within each subdomain.	
�

MPI	
�

th
re

ad
	
�

th
re

ad
	
�

th
re

ad
	
�

…	
�

Multicore
processor

+
GPU	
�

…	
�…	
�…	
�

OpenMP	
�

Performance results
14

p  Problem size = 1283.

p  About 50% of the computational work is done by GPU.

p  Multithreading is not yet fully developed.

•  2 MPI processes.
•  Each process is an hexa-core

processor.
•  Up to 6 threads per process
 (12 threads in total).

Conclusion and future work	
�
15	
�

¨  A hybrid multi-core GPU Navier-Stokes solver which includes
the solution of the Helmholtz-like and Poisson equations.

¨  Significant acceleration by taking advantage of GPU devices.

¨  More computational work to be transferred on GPU.
¤  Construction of the tridiagonal systems.
¤  Computation of convection flux, diffusion flux, etc..

¨  Multi-threading implementation to be ameliorated.

¨  Using PETSc iterative solver when direct solver is not available.
¨  Larger scale simulations.

16	
�

