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The main research areas addressed by 
ParSys include high-performance 
computing, distributed algorithms, 
compilation and code optimization.	
�

Founded more than 30 
years ago, LRI has now 
over 260 members, 
including 105 faculty 
and staff and 90 Ph.D. 
students.	
�
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Navier-Stokes equations	
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¨  The incompressible NS equations are the fundamental bases of 
many CFD problems.	
�

A million dollars in cash awaits 
anyone who can develop a 
rigorous mathematical model 
for how fluids flow. 

-- Clay Mathematics Institute 



¨     

 
¨  Density is neglected because the problem is supposed to be 

with constant coefficient. 

¨  Reynolds number     indicates the fluid state. Larger     
demands finer mesh discretization. 

¨  Non-linear convection term              can be simplified as         
for incompressible fluid flow. 
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Incompressible Navier-Stokes equations	
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Solving NS equations with a prediction-projection 
method	
�
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¨  Hodge-Helmholtz decomposition:  
¨       

 
 

u  Y. Wang, M. Baboulin, J. Dongarra, J. Falcou, Y. Fraigneau, O. Le Maître 

      A Parallel Solver for Incompressible Fluid Flows. ICCS 2013: 439-448. 
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Helmholtz-like 
equation	
�

Poisson equation	
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Time increments	
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Solving Helmholtz-like equation	
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¨      
¨  Alternating Direction Implicit method: 

¨  System of 3 Helmholtz-like equations: 

 
¨  Thomas algorithm  
¨  Matrix transpose: reordering 
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Tridiagonal systems	
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Solving Helmholtz-like equation	
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¨              
¨     is a tridiagonal block matrix.  

¨  For certain cases,          can by considered as a smaller system 
with multiple RHS. 

¨  Two methods available: 
¤  Thomas algorithm: Gaussian elimination without pivoting. 
¤  Explicit inverse of    è              .	
�

Bij
−1 =

(−1)i+ j cici+1...cj−1θi−1φ j+1 /θn,

θi−1φi+1 /θn,

(−1)i+ j a j+1aj+2...aiθ j−1φi+1 /θn,

"

#
$$

%
$
$

i > j,
i = j,
i > j.

θi = biθi−1 − ci−1aiθi−2, i = 2,...,m,

φi = biφi+1 − ciai+1φi+2, i =m−1,...,1,

θ0 =1, θ1 = b1,

φm+1 =1, φm = bm,

Bx = f .
B B = [ai,bi,ci ]i=1,...,m

Bx = f

B x = B−1 f



Solving Helmholtz-like equation	
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u(x)−αΔu(x) = f (x),#
$
%

&% u(x) = 0,
x ∈Ω = (0,1)3,
x ∈∂Ω,

f (x) = (1+3απ 2 )u(x), α =107,
u(x) = sin(π x1)sin(π x2 )sin(π x3).

Using the explicit inverse of B gains a 
factor of 4 over the Thomas algorithm, 
while the accuracy is the same. 

However, the application of the explicit inverse is limited:  
only problems with no immerged body, and with same 
boundary conditions, etc. 	
�



Solving Poisson equation	
�
10	
�

¨    
¨  Partial diagonalization: 

¨  Thomas algorithm 
¨  Matrix transpose: reordering 
¨  Most time-consuming part is the matrix-matrix multiplication. 

¤  Using GPU to accelerate.  
¤  MAGMA: Matrix Algebra on GPU and Multicore Architectures. 
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CPU vs. GPU on Helmholtz and Poisson problems	
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Problem size = 2563 	
� Helmholtz 
(with B-1)	
�

Poisson	
�

Transfer CPU è GPU	
� 102	
� 148	
�

Matrix multiplication	
� 261	
� 116	
�

Solution reordering	
� 162	
� 108	
�

Tridiagonal system solve	
� -	
� 185	
�

Total GPU solver	
� 423	
� 409	
�

Total CPU solver* (12 MPI processes)	
� 1813	
� 1700	
�

Acceleration	
� x4.3	
� x4.2	
�

2 Inter Xeon E5645 è 12 cores in total. 
2 NVIDIA Tesla C2075.	
�



SUNFLUIDH	
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¨  Navier-Stokes solver developed at LIMSI (Laboratoire 
d’Informatique pour la Mécanique et les Sciences de l’Ingénieur) 

¨  3D simulation of unsteady incompressible flow or low Mach 
number flow.   
¤  Forced convection flow 
¤  Thermal convection flow 
¤  Multispecies flow 
¤  Reactive flow 

¨  The base frame of our current work. 
¨  More information on http://perso.limsi.fr/yann/ . 



Hybrid model of our NS solver	
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¨  Domain is divided equally into 
subdomains. 

 
¨  One subdomain corresponds to one 

MPI process. 
 
¨  Each process is associated to one 

GPU acceleration. 
 
¨  Multi-threading techniques are 

applied within each subdomain.	
�
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Performance results 
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p  Problem size = 1283. 

p  About 50% of the computational work is done by GPU. 

p  Multithreading is not yet fully developed. 

•  2 MPI processes. 
•  Each process is an hexa-core 

processor. 
•  Up to 6 threads per process 
     (12 threads in total). 
 



Conclusion and future work	
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¨  A hybrid multi-core GPU Navier-Stokes solver which includes 
the solution of the Helmholtz-like and Poisson equations. 

¨  Significant acceleration by taking advantage of GPU devices. 

 

¨  More computational work to be transferred on GPU. 
¤  Construction of the tridiagonal systems. 
¤  Computation of convection flux, diffusion flux, etc.. 

¨  Multi-threading implementation to be ameliorated. 

¨  Using PETSc iterative solver when direct solver is not available. 
¨  Larger scale simulations. 
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