BLUE WATERS SUSTAINED PETASCALE COMPUTING

Applications and their challenges on Blue Waters

Greg Bauer

Overview

- What is running on Blue Waters?
- What are the issues and what to do about them?
 - Scalability
 - Runtime consistency
 - Other job interference
 - IO
 - Congestion Protection
 - Interrupts

Changes to the system

- More XK nodes
 - From 3,072 to 4,224.
- Flattened XK region in torus
 - From 8x8x24 to 15x6x24.
- LNET nodes redistributed across XE and XK
 - Good Improved aggregate bandwidth within the XK region of the torus (more X links, fewer Y links). LNETs in XK region provide possible (future) co-location of compute and IO.
 - Not so good LNETs in region (IO was going through XK region anyway). X dimension now greater than ½ total X dimension. Requires topology aware scheduling.
- Testing with XK acceptance applications showed either little change or improved performance for 'before/after' comparison.

XE Usage in the last 3 months

- 50% of usage is 1,024 nodes or larger.
- Two teams using 5,000 and 8,192 nodes.
- During Friendly User period, several teams sustained runs at full system.
- Nothing prevents users from submitting very large jobs and priority goes to larger jobs.
- Average expansion factor for large jobs < 10.

Turbulence

PSDNS – 3D FFTs, off-node transposes using CAF replacement for the concurrent Alltoalls. Routinely running at 8,192 nodes (262,144 tasks) for 8,192³ problem in 48 hr. chunks.

 DISTUF – DNS using PETSc CG for direct Poisson solve. Looking at using MG. Scaling and code validation underway. Up to 512 nodes.

Cybershake

- Scalability issues with jobs on busy system. Cray (Fiedler) Topaware improved node selection and rank ordering.
- Looking at ways of using host CPU on XK nodes for part of workflow while GPU is doing computation.

Table 1: Topology tuning with Topaware tool improved strong scaling efficiency for fixed 45B mesh point AWP-SGTc benchmark calculation with 64, 512, and 4096 nodes

#nodes	Default	Topaware	Speedup	Efficiency ↑
64	4.006	3.991	0.37%	100% → 100%
512	0.572	0.554	3.15%	87.5% → 90%
4096	0.119	0.077	35.29%	52.6% → 81%

Paper in Extreme Scaling Workshop 2013

Coarse Grained MD

- Novel MD algorithm.
- Improved memory usage.
- Hilbert space filling curve (SFC) for load balancing.
- Dynamic communications mapping to handle irregular SFC boundaries.
- Scaling to 16,250 nodes (260,000 FP cores). Earlier data shown at right.
- Mostly MPI but replaced some functionality with DMAPP when faster.
- BW Symposium https:// bluewaters.ncsa.illinois.edu/web/ portal/symposium-may-2013
- ACS paper http://pubs.acs.org/doi/ full/10.1021/ct400727q

CG-MD raw simulation time

Multi-Scale Fluid-Kinetic Simulation

- MHD-kinetic code to modeling the solar wind.
- Chombo framework for AMR and dynamic load balancing.
- P3DFFT
- Good strong (starting at 1,250 nodes) and weak scaling to 7,500 nodes.
- http:// adsabs.harvard.edu/abs/ 2013ASPC..474..165P

XK jobs as of end of September

XK aprun nodecnt historgram

By looking at aprun instances and not job node count we can see when workloads are many single nodes bundled in a larger job. A large number of >3,000 node apuns.

XK use scenarios

- Adoption of GPU
 - SIAL (ACESIII) user annotation (SIAL directives) to assist CUDA code generator to get best speed-up. (T) – triples from CCSD(T).
 - https:// bluewaters.ncsa.illinois.edu/web/ portal/symposium-may-2013

- NEMO PETSc + MAGMA to utilize GPU.
 Working on issues with sparse matrices and
 developing load balancing strategy across GPU
 and host CPU.
- https://bluewaters.ncsa.illinois.edu/web/portal/ symposium-may-2013

JLPC 2013 10

TorusView of 10 largest running jobs

- Relatively compact allocations.
- Some scattered clustering.
- Lots of concave shapes.
- Not showing all the small jobs filling in the rest of the torus.

TorusView of 10 largest running jobs

- Allocations shift planes as the end of the Z direction is hit.
- Voids where larger job allocations wrap around smaller ones.

Better nid allocation

• Would be probetter to have one of the Buffer I owning to Google with the Nutros://bluewaters.ncsa.illinois.edu/portlettest Wore about this tomorrow.

Impact of nid allocation

- Job Job interaction
 - Analysis of key application communication intensity and sensitivity
 - 20% slowdown typical,
 100% or more possible.

Communication	MILC	NAMD	NWCHEM	PSDNS	WRF
Intensive	2	2	3	2	1
Sensitive	2	3	1	2	1

1 – low 3 – high as viewed by convex app.

Impact of poor nid allocation - Consistency

Two jobs (8,192 nodes)
with nearly same nid
allocation (s10_8972n).
Red job affected by other
workload communicating
through the region.

Run time variation - poor wallclock accuracy (padding wallclock).

10

- LNETs scattered across the torus (orange colored geminis).
- Specific OSTs served by specific LNETs (not a full fat tree for the IB between OSTs and LNETs).
- IO is "topology sensitive".

Routing of IO write

- 15 compute geminis

 (•) (30 nodes) writing
 to files served by a
 LNET pair (•).
- Color scale is the number of convergent routes on the link.

"Topology" aware IO library

Impact OST-node distance, 10 OSTs Write

 Analysis of the Blue Waters File System Architecture for Application IO Performance - CUG 2013, May 6, 2013 Authors: Kalyana Chadalavada, Rob Sisneros

JLPC 2013

18

GREAT LAKES CONSORTIUM

Congestion Protection

- To avoid data loss, traffic injection is throttled for a period of time, when reaching a point where forward progress is stalling. Throttling is applied and removed until congestion is cleared.
- System monitors percentage of time that traffic trying to enter the network from the nodes and percentage of time network tiles are stalled.
- Fortunately not a common occurrence. It does happen, typically in bursts.
- Can happen with node-node (MPI, PGAS) or node-LNET (IO) traffic.
- Many-to-one and long-path patterns.
- Libraries and user can control node injection as a precaution.
- In CP reports, flit rates represent data arriving at the node from the interconnection network.

Max									
lame	Nodes	Flits/s	UID	Start	End				
astro3d.Linux.	2048	31698	46466	16:00:45	19:41:40				
astro3d.Linux.	2048	81115	46466	16:01:05	19:37:03				
amd2	2000		43448	01:58:31	18:02:09				
solve	2000	45732	47252	17:12:34	17:30:30				
u3_rhmd_hisq_q	1536		12940	07:29:16					
wchem	1000		32745	13:58:50	18:02:07				
wchem	1000	4128749	32745	17:00:22	18:15:32				
s_spectrum_his	768		12940	11:30:04					
amd2	700		42864	10:35:55					
	astro3d.Linux. astro3d.Linux. amd2 solve u3_rhmd_hisq_q wchem wchem s_spectrum_his	astro3d.Linux. 2048 astro3d.Linux. 2048 amd2 2000 solve 2000 u3_rhmd_hisq_q 1536 wchem 1000 wchem 1000 s_spectrum_his 768	astro3d.Linux. 2048 31698 astro3d.Linux. 2048 81115 amd2 2000 solve 2000 45732 u3_rhmd_hisq_q 1536 wchem 1000 wchem 1000 4128749 s_spectrum_his 768	astro3d.Linux. 2048 31698 46466 astro3d.Linux. 2048 81115 46466 amd2 2000 43448 solve 2000 45732 47252 u3_rhmd_hisq_q 1536 12940 wchem 1000 32745 wchem 1000 4128749 32745 s_spectrum_his 768 12940	astro3d.Linux. 2048 31698 46466 16:00:45 astro3d.Linux. 2048 81115 46466 16:01:05 amd2 2000 43448 01:58:31 solve 2000 45732 47252 17:12:34 u3_rhmd_hisq_q 1536 12940 07:29:16 wchem 1000 32745 13:58:50 wchem 1000 4128749 37745 17:00:22 s_spectrum_his 768 12940 11:30:04				

Top Bandwidth Applications

,											
0:	apid	2218386	userid	43448	numnids	2000	apname	namd2 K	flits/sec:	Total	3075
1:	apid	2219859	userid	32745	numnids	1000	apname	nwchem K	flits/sec:	Total	2743
2:	apid	2220462	userid	46466	numnids	2048	apname	Castro3d.Linux. K	flits/sec:	Total	2715
3:	apid	2220460	userid	46466	numnids	2048	apname	Castro3d.Linux. K	flits/sec:	Total	2691
4:	apid	2219517	userid	42864	numnids	700	apname	namd2 K	flits/sec:	Total	2271
5:	apid	2219519	userid	42864	numnids	700	apname	namd2 K	flits/sec:	Total	2073
6:	apid	2218759	userid	12940	numnids	1536	apname	su3_rhmd_hisq_q K	flits/sec:	Total	2071
7:	apid	2219514	userid	42864	numnids	700	apname	namd2 K	flits/sec:	Total	1762
8:	apid	2220646	userid	12940	numnids	512	apname	ks_spectrum_his K	flits/sec:	Total	1596
9:	apid	2217219	userid	47296	numnids	500	apname	python K	flits/sec:	Total	1389

Congestion Candidate COMPUTE Nodes

Congestion Candidate Conform Nodes

1: c17-0c1s0n1 (64051 flits/sec) (nid 18401; apid 2220473 userid 14394 numnids 32 apname numa_script.sh)
2: c9-0c0s1n0 (61950 flits/sec) (nid 23036; apid 2219894 userid 14394 numnids 32 apname numa_script.sh)
3: c10-1c0s3n2 (24438 flits/sec) (nid 5798; apid 2219756 userid 14394 numnids 32 apname numa_script.sh)
4: c3-10c0s5n1 (24238 flits/sec) (nid 25867; apid 2219672 userid 35077 numnids 64 apname enzo.exe)
5: c12-1c0s2n2 (22544 flits/sec) (nid 8026; apid 2219756 userid 14394 numnids 32 apname numa_script.sh)
6: c5-10c0s6n3 (20193 flits/sec) (nid 24813; apid 2219672 userid 35077 numnids 64 apname enzo.exe)
7: c12-1c0s2n0 (20161 flits/sec) (nid 8004; apid 2219756 userid 14394 numnids 32 apname numa_script.sh)
8: c14-1c0s3n0 (19784 flits/sec) (nid 8120; apid 2219756 userid 14394 numnids 32 apname numa_script.sh)
9: c10-1c0s2n1 (19273 flits/sec) (nid 5816; apid 2219756 userid 14394 numnids 32 apname numa_script.sh)
10: c10-1c0s3n0 (17453 flits/sec) (nid 5816; apid 2219756 userid 14394 numnids 32 apname numa_script.sh)

Top 100 Congestion Candidate Nodes (614 compute nodes: 134938785 flits/s, 590 service nodes: 1257373796 flits/s)

1: c20-10c0s3n0 4128749 flits/sec nid 12038; apid 2220668 userid 32745 numnids 1000 apname nwchem c2: c20-10c0s3n3 3396088 flits/sec nid 12057; apid 2220668 userid 32745 numnids 1000 apname nwchem c3: c21-11c1s1n2 3351520 flits/sec nid 15484; apid 2220668 userid 32745 numnids 1000 apname nwchem c4: c17-10c0s3n2 3233871 flits/sec nid 17894; apid 2220668 userid 32745 numnids 1000 apname nwchem c5: c21-11c1s1n3 2912123 flits/sec nid 15485; apid 2220668 userid 32745 numnids 1000 apname nwchem c7: c20-10c1s1n3 2739003 flits/sec nid 12067; apid 2220668 userid 32745 numnids 1000 apname nwchem c7: c20-10c1s1n2 2727704 flits/sec nid 12066; apid 2220668 userid 32745 numnids 1000 apname nwchem c8: c21-11c1s2n0 2629574 flits/sec nid 15524; apid 2220668 userid 32745 numnids 1000 apname nwchem c9: c15-11c1s4n0 261990 flits/sec nid 19030; apid 2220668 userid 32745 numnids 1000 apname nwchem c10: c21-11c1s2n3 2604278 flits/sec nid 15483; apid 2220668 userid 32745 numnids 1000 apname nwchem c10: c21-11c1s2n3 2604278 flits/sec nid 15483; apid 2220668 userid 32745 numnids 1000 apname nwchem c10: c21-11c1s2n3 2604278 flits/sec nid 15483; apid 2220668 userid 32745 numnids 1000 apname nwchem c10: c21-11c1s2n3 2604278 flits/sec nid 15483; apid 2220668 userid 32745 numnids 1000 apname nwchem c10: c21-11c1s2n3 2604278 flits/sec nid 15483; apid 2220668 userid 32745 numnids 1000 apname nwchem c10: c21-11c1s2n3 2604278 flits/sec nid 15483; apid 2220668 userid 32745 numnids 1000 apname nwchem c10: c21-11c1s2n3 2604278 flits/sec nid 15483; apid 2220668 userid 32745 numnids 1000 apname nwchem c10: c21-11c1s2n3 2604278 flits/sec nid 15483; apid 2220668 userid 32745 numnids 1000 apname nwchem c10: c21-11c1s2n3 2604278 flits/sec nid 15483; apid 2220668 userid 32745 numnids 1000 apname nwchem c10: c21-11c1s2n3 2604278 flits/sec nid 15483; apid 2220668 userid 32745 numnids 1000 apname nwchem c10: c21-11c1s2n3 2604278 flits/sec nid 15485; apid 2220668 userid 32745 numnids 1000 apname nwchem c10: c21-11c1s2n3 2604278 flits/sec nid 15485; apid 22206

Congestion Protection Burst

Congestion Protection Analysis

- Look at application to node relation.
- wrf listed as top application and the top 10 nodes are wrf nodes.
- nwchem running at same time (listed #4).
- The OVIS state of the network data should help here.

Interrupts

- We provide to the user a checkpoint interval calculator based on the work of J. Daly, using recent node and system interrupt data.
- September data
 - 22,640 XE nodes MTTI ~ 14 hrs.
 - 4,224 XK nodes MTTI ~ 32 hrs.
 - System interrupts MTTI ~ 100 hrs.
- Checkpoint intervals on the order of 4 6 hrs. at full system (depending on time to write checkpoint).