
Applications and their challenges on
Blue Waters

Greg Bauer

Overview

•  What is running on Blue Waters?
•  What are the issues and what to do about them?

•  Scalability
•  Runtime consistency
•  Other job interference
•  IO
•  Congestion Protection
•  Interrupts

2 JLPC 2013

Changes to the system

•  More XK nodes
•  From 3,072 to 4,224.

•  Flattened XK region in torus
•  From 8x8x24 to 15x6x24.

•  LNET nodes redistributed across XE and XK
•  Good – Improved aggregate bandwidth within the XK region of the

torus (more X links, fewer Y links). LNETs in XK region provide
possible (future) co-location of compute and IO.

•  Not so good – LNETs in region (IO was going through XK region
anyway). X dimension now greater than ½ total X dimension.
Requires topology aware scheduling.

•  Testing with XK acceptance applications showed either little
change or improved performance for ‘before/after’ comparison.

3 JLPC 2013

XE Usage in the last 3 months

4 JLPC 2013

•  50% of usage is
1,024 nodes or
larger.

•  Two teams using
5,000 and 8,192
nodes.

•  During Friendly User
period, several teams
sustained runs at full
system.

•  Nothing prevents
users from submitting
very large jobs and
priority goes to larger
jobs.

•  Average expansion
factor for large jobs <
10.

Turbulence

5 JLPC 2013

•  DISTUF – DNS using PETSc
CG for direct Poisson solve.
Looking at using MG. Scaling
and code validation underway.
Up to 512 nodes.

(a) Vorticity contours around nonvaporizing spheri-

cal droplets in isotropic turbulence. Red and blue

contours indicate positive and negative vorticity, re-

spectively. Only a small zone of the plane is shown.

(b) Velocity vectors outside and inside two nonvapor-

izing spherical droplets in isotropic turbulence. The

vectors are projected on the middle plane of a three-

dimensional domain. Contours of velocity component

perpendicular to the plane are : blue(-), green , yel-

low (+) . The zone displayed is only a quarter of that

shown in (a).

Figure 2: Preliminary results

two spherical droplets in isotropic turbulence.

2.4 Why a Petascale Resource of Blue Waters Capability is Needed

We have been using Blue Gene/P (Intrepid) during the past two years to run our DNS code for the

simulation of particle-laden turbulent flows. However, our current simulation requirements (both run-

time and number of cores) exceed those allowed on BG/P as explained below.

Computational mesh requirements for DNS of isotropic turbulence:

In order to resolve all the relevant length- and time-scales of a turbulent flow with wide enough spec-

trum it is essential to have a large Reynolds number, Reλ, based on Taylor’s length scale, λ. A wide

enough spectrum ensures the separation of the energetic and dissipative scales so that the turbulence

becomes insensitive to the boundary conditions and forcing at large scales. It can be shown that the

ratio between the largest and smallest length-scales �/η = 0.25Re3/2
λ , which means that the number of

mesh points, N , per side length of the cubical domain is N ≈ 0.4Re3/2
λ . Table 1 lists the values Reλ

and the corresponding N3
for a cubical domain (Donzis et al., 2008; Ishihara et al., 2007). For a given

N , the smaller value of Reλ range results in a higher resolution of the smallest length scale η.

Reλ 120-240 190-380 300-600 480-1000

N3
512

3
1024

3
2048

3
4096

3

Table 1: Required number of mesh points in a cubical domain for a prescribed Reλ.

7

•  PSDNS – 3D FFTs, off-node
transposes using CAF
replacement for the concurrent
Alltoalls. Routinely running at
8,192 nodes (262,144 tasks) for
8,1923 problem in 48 hr. chunks.

Cybershake

•  Scalability issues with jobs on
busy system. Cray (Fiedler)
Topaware improved node
selection and rank ordering.

•  Looking at ways of using host
CPU on XK nodes for part of
workflow while GPU is doing
computation.

6 JLPC 2013

Paper in Extreme Scaling
Workshop 2013

Coarse Grained MD

•  Novel MD algorithm.
•  Improved memory usage.
•  Hilbert space filling curve (SFC) for

load balancing.
•  Dynamic communications mapping to

handle irregular SFC boundaries.
•  Scaling to 16,250 nodes (260,000 FP

cores). Earlier data shown at right.
•  Mostly MPI but replaced some

functionality with DMAPP when
faster.

•  BW Symposium - https://
bluewaters.ncsa.illinois.edu/web/
portal/symposium-may-2013

•  ACS paper - http://pubs.acs.org/doi/
full/10.1021/ct400727q

7 JLPC 2013

(a) (b) (c)

Multi-Scale Fluid-Kinetic Simulation

•  MHD-kinetic code to
modeling the solar wind.

•  Chombo framework for
AMR and dynamic load
balancing.

•  P3DFFT
•  Good strong (starting at

1,250 nodes) and weak
scaling to 7,500 nodes.

•  http://
adsabs.harvard.edu/abs/
2013ASPC..474..165P

8 JLPC 2013

XK jobs as of end of September

9 JLPC 2013

0.1	

1	

10	

100	

1000	

10000	

100000	

1000000	

1	
 10	
 100	
 1000	

	
 #
	
 o
f	
 a

pr
un

s	
 a
t	
 n

od
ec
nt
	

nodecnt	

XK	
 aprun	
 nodecnt	
 historgram	

PRAC_jnk	
 (Schulten)	

PRAC_jn6	
 (Cheatham)	

PRAC_jnf	
 (Sugar)	

PRAC_jnu	
 (Bernholc)	

PRAC_jmz	
 (Jordan)	

PRAC_jmi	

PRAC_jmo	

PRAC_jmq	

PRAC_jmu	

PRAC_jmv	

PRAC_jn0	

PRAC_jn2	

PRAC_jn4	

PRAC_jnh	

•  By looking at
aprun instances
and not job
node count we
can see when
workloads are
many single
nodes bundled
in a larger job.

•  A large number
of >3,000 node
apuns.

XK use scenarios

•  Adoption of GPU
•  SIAL (ACESIII) – user

annotation (SIAL directives) to
assist CUDA code generator to
get best speed-up. (T) – triples
from CCSD(T).

•  https://
bluewaters.ncsa.illinois.edu/web/
portal/symposium-may-2013

10 JLPC 2013

•  NEMO – PETSc + MAGMA to utilize GPU.
Working on issues with sparse matrices and
developing load balancing strategy across GPU
and host CPU.

•  https://bluewaters.ncsa.illinois.edu/web/portal/
symposium-may-2013

TorusView of 10 largest running jobs

•  Relatively compact
allocations.

•  Some scattered
clustering.

•  Lots of concave
shapes.

•  Not showing all the
small jobs filling in the
rest of the torus.

11 JLPC 2013

Y

Z

TorusView of 10 largest running jobs

12 JLPC 2013

•  Allocations shift
planes as the end of
the Z direction is hit.

•  Voids where larger
job allocations wrap
around smaller ones.

Better nid allocation
•  Would be better to have one of the following …
•  More about this tomorrow.

13 JLPC 2013

Impact of nid allocation

•  Job – Job interaction
•  Analysis of key

application
communication
intensity and sensitivity

•  20% slowdown typical,
100% or more possible.

14 JLPC 2013

Concave allocation
Convex allocation

Communica6on	
 MILC	
 NAMD	
 NWCHEM	
 PSDNS	
 WRF	

Intensive	
 2	
 2	
 3	
 2	
 1	

SensiIve	
 2	
 3	
 1	
 2	
 1	

1	
 –	
 low	
 	
 3	
 –	
 high	

as	
 viewed	
 by	
 convex	
 app.	

Impact of poor nid allocation - Consistency
•  Two jobs (8,192 nodes)

with nearly same nid
allocation (s10_8972n).
Red job affected by other
workload communicating
through the region.

15 JLPC 2013

 0

 10

 20

 30

 40

 50

 0 500 1000 1500 2000 2500 3000 3500 4000

st
ep

 ti
m

e
(s

ec
on

ds
 /

st
ep

)

step #

•  Run time variation - poor
wallclock accuracy
(padding wallclock).

IO

•  LNETs scattered across
the torus (orange colored
geminis).

•  Specific OSTs served by
specific LNETs (not a full
fat tree for the IB between
OSTs and LNETs).

•  IO is “topology sensitive”.

16 JLPC 2013

Routing of IO write

15 compute -> 2 lnet (write)

compute
lnet

+X
-X

+Y
-Y

+Z
-Z

0

5

10

15

20

X

0

5

10

15

20

Y

0

5

10

15

20

Z

1

2

3

4

5

6

7

8

9

10

11

12

•  15 compute geminis
(�) (30 nodes) writing
to files served by a
LNET pair (�).

•  Color scale is the
number of convergent
routes on the link.

17 JLPC 2013

“Topology” aware IO library

•  Analysis of the Blue Waters File System Architecture
for Application IO Performance - CUG 2013, May 6,
2013 Authors: Kalyana Chadalavada, Rob Sisneros

18 JLPC 2013

Congestion Protection

•  To avoid data loss, traffic injection is
throttled for a period of time, when
reaching a point where forward progress
is stalling. Throttling is applied and
removed until congestion is cleared.

•  System monitors percentage of time that
traffic trying to enter the network from the
nodes and percentage of time network
tiles are stalled.

•  Fortunately not a common occurrence. It
does happen, typically in bursts.

•  Can happen with node-node (MPI,
PGAS) or node-LNET (IO) traffic.

•  Many-to-one and long-path patterns.
•  Libraries and user can control node

injection as a precaution.
•  In CP reports, flit rates represent data

arriving at the node from the
interconnection network.

 Max!
APID Name Nodes Flits/s UID Start End!
---!
2220460 Castro3d.Linux. 2048 31698 46466 16:00:45 19:41:40!
2220462 Castro3d.Linux. 2048 81115 46466 16:01:05 19:37:03!
2218386 namd2 2000 -- 43448 01:58:31 18:02:09!

2220803 psolve 2000 45732 47252 17:12:34 17:30:30!
2218759 su3_rhmd_hisq_q 1536 -- 12940 07:29:16 !
2219859 nwchem 1000 -- 32745 13:58:50 18:02:07!
2220668 nwchem 1000 4128749 32745 17:00:22 18:15:32!
2219678 ks_spectrum_his 768 -- 12940 11:30:04 !

2219512 namd2 700 -- 42864 10:35:55 !
…!
…!
!
===!
Top Bandwidth Applications!

===!
0: apid 2218386 userid 43448 numnids 2000 apname namd2 Kflits/sec: Total 3075!
1: apid 2219859 userid 32745 numnids 1000 apname nwchem Kflits/sec: Total 2743!
2: apid 2220462 userid 46466 numnids 2048 apname Castro3d.Linux. Kflits/sec: Total 2715!
3: apid 2220460 userid 46466 numnids 2048 apname Castro3d.Linux. Kflits/sec: Total 2691!

4: apid 2219517 userid 42864 numnids 700 apname namd2 Kflits/sec: Total 2271!
5: apid 2219519 userid 42864 numnids 700 apname namd2 Kflits/sec: Total 2073!
6: apid 2218759 userid 12940 numnids 1536 apname su3_rhmd_hisq_q Kflits/sec: Total 2071!
7: apid 2219514 userid 42864 numnids 700 apname namd2 Kflits/sec: Total 1762!
8: apid 2220646 userid 12940 numnids 512 apname ks_spectrum_his Kflits/sec: Total 1596!

9: apid 2217219 userid 47296 numnids 500 apname python Kflits/sec: Total 1389!
…!
===!
Congestion Candidate COMPUTE Nodes!
===!

1: c17-0c1s0n1 (64051 flits/sec) (nid 18401; apid 2220473 userid 14394 numnids 32 apname numa_script.sh)!
2: c9-0c0s1n0 (61950 flits/sec) (nid 23036; apid 2219894 userid 14394 numnids 32 apname numa_script.sh)!
3: c10-1c0s3n2 (24438 flits/sec) (nid 5798; apid 2219756 userid 14394 numnids 32 apname numa_script.sh)!
4: c3-10c0s5n1 (24238 flits/sec) (nid 25867; apid 2219672 userid 35077 numnids 64 apname enzo.exe)!
5: c12-1c0s2n2 (22544 flits/sec) (nid 8026; apid 2219756 userid 14394 numnids 32 apname numa_script.sh)!

6: c5-10c0s6n3 (20193 flits/sec) (nid 24813; apid 2219672 userid 35077 numnids 64 apname enzo.exe)!
7: c12-1c0s2n0 (20161 flits/sec) (nid 8004; apid 2219756 userid 14394 numnids 32 apname numa_script.sh)!
8: c14-1c0s3n0 (19784 flits/sec) (nid 8120; apid 2219756 userid 14394 numnids 32 apname numa_script.sh)!
9: c10-1c0s2n1 (19273 flits/sec) (nid 5819; apid 2219756 userid 14394 numnids 32 apname numa_script.sh)!

10: c10-1c0s3n0 (17453 flits/sec) (nid 5816; apid 2219756 userid 14394 numnids 32 apname numa_script.sh)!
!
===!
Top 100 Congestion Candidate Nodes (614 compute nodes: 134938785 flits/s, 590 service nodes: 1257373796 flits/
s)!
===!

1: c20-10c0s3n0 4128749 flits/sec nid 12038; apid 2220668 userid 32745 numnids 1000 apname nwchem!
2: c20-10c0s3n3 3396088 flits/sec nid 12057; apid 2220668 userid 32745 numnids 1000 apname nwchem!
3: c21-11c1s1n2 3351520 flits/sec nid 15484; apid 2220668 userid 32745 numnids 1000 apname nwchem!
4: c17-10c0s3n2 3233871 flits/sec nid 17894; apid 2220668 userid 32745 numnids 1000 apname nwchem!
5: c21-11c1s1n3 2912123 flits/sec nid 15485; apid 2220668 userid 32745 numnids 1000 apname nwchem!

6: c20-10c1s1n3 2739003 flits/sec nid 12067; apid 2220668 userid 32745 numnids 1000 apname nwchem!
7: c20-10c1s1n2 2727704 flits/sec nid 12066; apid 2220668 userid 32745 numnids 1000 apname nwchem!
8: c21-11c1s2n0 2629574 flits/sec nid 15524; apid 2220668 userid 32745 numnids 1000 apname nwchem!
9: c15-11c1s4n0 2619990 flits/sec nid 19030; apid 2220668 userid 32745 numnids 1000 apname nwchem!
10: c21-11c1s2n3 2604278 flits/sec nid 15483; apid 2220668 userid 32745 numnids 1000 apname nwchem!

!

19 JLPC 2013

Congestion Protection Burst

20 JLPC 2013

Congestion Protection Analysis

•  Look at application to
node relation.

•  wrf listed as top
application and the top
10 nodes are wrf
nodes.

•  nwchem running at
same time (listed #4).

•  The OVIS state of the
network data should
help here.

 0
 5

 10
 15

 20 0

 5

 10

 15

 20

 0

 5

 10

 15

 20

Z

wrf.exe:2151512
top 10 nodes

X

Y

Z

 86439

 121157

 90000

 95000

 100000

 105000

 110000

 115000

 120000

21 JLPC 2013

Interrupts

•  We provide to the user a checkpoint interval
calculator based on the work of J. Daly, using recent
node and system interrupt data.

•  September data
•  22,640 XE nodes MTTI ~ 14 hrs.
•  4,224 XK nodes MTTI ~ 32 hrs.
•  System interrupts MTTI ~ 100 hrs.

•  Checkpoint intervals on the order of 4 – 6 hrs. at full
system (depending on time to write checkpoint).

22 JLPC 2013

