
Collective Mind: making auto-tuning practical using 
crowdsourcing and predictive modeling 

Grigori Fursin  
INRIA, France 

INRIA-Illinois-ANL 10th workshop 
Urbana, IL, USA 
November 2013 



Grigori Fursin        “Collective Mind: making auto-tuning practical using crowdsourcing and predictive modeling”                                                                       2 

• General problems in computer engineering 

• Cleaning up research and experimental mess 

 Collective Mind Repository, infrastructure and methodology 
 Reproducible research and experimentation 
 Crowdsourcing, predictive modelling 

• Unifying compiler multi-objective auto-tuning  

• Unifying performance modelling  

• Conclusions and future work 

Summary 

Challenges: 
• How to abstract and unify whole system auto-tuning and modeling? 
• How to predict optimizations while helping architecture or compiler designers? 
• How to preserve all past tuning knowledge and extrapolate it to the new systems? 



Grigori Fursin        “Collective Mind: making auto-tuning practical using crowdsourcing and predictive modeling”                                                                       3 

Back to 1993 

Semiconductor neural element - 
base of neural accelerators  

and computers 
Modeling and understanding  

brain functions 

My problem 
with modeling: 

• Slow 
• Unreliable 
• Costly 



Grigori Fursin        “Collective Mind: making auto-tuning practical using crowdsourcing and predictive modeling”                                                                       4 

Solutions 

User’s task 

Result 

Problems I have been facing since 1993 

Application 

Compilers 

Binary and libraries 

Architecture 

Run-time environment 

State of the system Data set 

Algorithm 

End-users care about performance, reliability, costs. 
Technology is secondary! 



Grigori Fursin        “Collective Mind: making auto-tuning practical using crowdsourcing and predictive modeling”                                                                       5 

User’s task 

Result 
End-users care about performance, reliability, costs. 

Technology is secondary! 

Delivering optimal solutions is tough: 

1) Rising complexity of computer systems:  
   too many design and optimization choices  

at ALL levels 

2) Performance is not anymore the only 
requirement: 

multiple user objectives vs choices 
benefit vs optimization time 

3)  Complex relationship and interactions between 
ALL software and hardware components  

4) Too many tools with non-unified interfaces 
changing from version to version:  

technological chaos 

Solutions 

GCC 4.1.x 

GCC 4.2.x 

GCC 4.3.x 

GCC 4.4.x 

GCC 4.5.x 

GCC 4.6.x 

GCC 4.7.x 

ICC 10.1 

ICC 11.0 

ICC 11.1 

ICC 12.0 

ICC 12.1 
LLVM 2.6 

LLVM 2.7 

LLVM 2.8 

LLVM 2.9 

LLVM 3.0 

Phoenix 

MVS XLC 

Open64 

Jikes 
Testarossa 

OpenMP 
MPI 

HMPP 

OpenCL 

CUDA 
gprof prof 

perf 

oprofile 

PAPI 

TAU 

Scalasca 

VTune 

Amplifier scheduling 

algorithm-
level TBB 

MKL 

ATLAS program-
level 

function-
level 

Codelet 

loop-level 

hardware 
counters 

IPA 

polyhedral 
transformations 

LTO 
threads process 

pass 
reordering 

run-time 
adaptation 

per phase 
reconfiguration 

cache size 

frequency 

bandwidth 

HDD size 

TLB 

ISA 

memory size 

processors 

threads 

power 
consumption execution time 

reliability 

User’s task 

Result 

Problems I have been facing since 1993 

http://micro.magnet.fsu.edu/chipshots/pentium/pent1medium.html


Grigori Fursin        “Collective Mind: making auto-tuning practical using crowdsourcing and predictive modeling”                                                                       6 

• Optimization spaces are large and non-linear with many local minima 

• Exploration is slow and ad-hoc (random, genetic, some heuristics) 

• Only small part of the system is taken into account 
(rarely reflect behavior of the whole system) 

• Very limited training sets (a few benchmarks, datasets, architectures) 

• Black box model doesn’t help architecture or compiler designers  

• Many statistical pitfalls and wrong usages of machine learning  
for compilation and architecture 

Auto-tuning, machine-learning,  
dynamic adaptation, co-design shows 

high potential for more than  2 
decades but still far from the 

mainstream in production 
environments due to: 

Summary of current problems 

By the end of experiments, new tool versions are often available;  
Life span of experiments and ad-hoc frameworks - end of MS or PhD project; 

Researchers focus on publications rather than practical and reproducible solutions 



Grigori Fursin        “Collective Mind: making auto-tuning practical using crowdsourcing and predictive modeling”                                                                       7 

Compiler auto-tuning 

Find empirically optimal  optimizations  
in multi-dimensional space while 
balancing multiple characteristics: 

• execution time 
• code size 
• compilation time 

Major problems in my projects: 

• Long training times (both auto-tuning and ML) 

1999-2005 (PhD and EU MHAOTEU project) 
4 kernels / SPEC2000, 1 datasets, 2 architectures,  
tiling/unrolling/padding, ~4 months of experiments, 
SHARED as CSV and thorough MySQL 
 
2006-2009 (EU MILEPOST project) 
16 benchmarks, 1dataset, 3 architectures,  
GCC and ICC, 500 combinations of flags, 
~6 months of experiments, SHARED through 
MySQL, plugin-based framework and web services 
 
2009-2011 (Collective Tuning) 
16 benchmarks, 20..1000 datasets,GRID5000 with 
16 nodes, ~10 months of experiments,  
SHARED through MySQL, plugin based framework 
and web services 
 
2011-cur (Collective Mind) 
300 benchmarks, 20..1000 datasets 
GRID5000 with 100 nodes,  
Some experiments are still in progress,  
SHARED ONLINE 

GCC optimization evolution 



Grigori Fursin        “Collective Mind: making auto-tuning practical using crowdsourcing and predictive modeling”                                                                       8 

Can we crowdsource auto-tuning? My main focus since 2004 

Can we leverage their experience and computational resources? 

Can we connect disjoint analysis, tuning, learning tools together with 
public repository of knowledge? 

Millions of users run realistic applications on different architectures with 
different datasets, run-time systems, compilers, optimizations! 

Got stuck with a limited number of benchmarks, datasets, 
architectures and a large number of optimizations and generated data; 

could not validate data mining and machine learning techniques   

Needed dramatically new approach! 



Grigori Fursin        “Collective Mind: making auto-tuning practical using crowdsourcing and predictive modeling”                                                                       9 

How to implement? 

Tool B VM 

Tool B V2 

Tool A VN 

Tool A V2 

Tool A V1 Tool B V1 Ad-hoc  
analysis and 

learning scripts 

Ad-hoc 
tuning scripts 

Collection of 
CSV, XLS, TXT 

and other files 

Experiments 

Revolutionary approach: 
Let’s redesign the whole system and make it tunable and adaptable? 

• Too complex and time consuming (decades) 

• Community will not easily accept 

 

Behavior 

Choices 

Features 

State 

Hardwired experimental setups, very difficult to change, scale or share 



Grigori Fursin        “Collective Mind: making auto-tuning practical using crowdsourcing and predictive modeling”                                                                       10 

How to implement? 

Tool B VM 

Tool B V2 

Tool A VN 

Tool A V2 

Tool A V1 Tool B V1 Ad-hoc  
analysis and 

learning scripts 

Ad-hoc 
tuning scripts 

Collection of 
CSV, XLS, TXT 

and other files 

Experiments 

Revolutionary approach: 
Let’s redesign the whole system and make it tunable and adaptable? 

• Too complex and time consuming (decades) 

• Community will not easily accept 

 

Evolutionary agile methodology: 

Gradually clean-up system and make it tunable and adaptable while 
involving community 

Behavior 

Choices 

Features 

State 



Grigori Fursin        “Collective Mind: making auto-tuning practical using crowdsourcing and predictive modeling”                                                                       11 

How to implement? 

Tool wrapper with unified and formalized input and output 

Unified JSON  
input  (meta-data) 

Tool B VM 

Tool B V2 

Tool A VN 

Tool A V2 

Tool A V1 Tool B V1 Ad-hoc  
analysis and 

learning scripts 

Ad-hoc 
tuning scripts 

Collection of 
CSV, XLS, TXT 

and other files 

Experiments 

P
ro

ce
ss

  C
M

D
 

Tool B Vi 

Behavior 

Choices 

Features 

State 

Action 

Action function 

Generated files 

Set 
environment 

for a given 
tool version 

Parse  
and unify 

output 

Unified 
JSON  

output   
(meta-data) 

Unified 
JSON input 
(if exists) 

Original  
unmodified 

ad-hoc 
input 

b       = B( c      , f       , s       )   
… … … … 

Formalized function (model)  
of a component behavior 

Flattened JSON vectors 
(either string categories  
or  integer/float values) 

cm [module name] [action] (param1=value1 param2=value2 … -- unparsed command line) 
cm compiler build -- icc -fast *.c 
cm code.source build ct_compiler=icc13 ct_optimizations=-fast 
cm code run os=android binary=./a.out dataset=image-crazy-scientist.pgm 
 
Should be able to run on any OS (Windows, Linux, Android, MacOS, etc)! 



Grigori Fursin        “Collective Mind: making auto-tuning practical using crowdsourcing and predictive modeling”                                                                       12 

c-mind.org / cTuning.org (2007-cur.) 

Tool wrapper with unified and formalized input and output 

Unified JSON  
input  (meta-data) 

Tool B VM 

Tool B V2 

Tool A VN 

Tool A V2 

Tool A V1 Tool B V1 Ad-hoc  
analysis and 

learning scripts 

Ad-hoc 
tuning scripts 

Collection of 
CSV, XLS, TXT 

and other files 

Experiments 

P
ro

ce
ss

  C
M

D
 

Tool B Vi 

Behavior 

Choices 

Features 

State 

Action 

Action function 

Generated files 

Set 
environment 

for a given 
tool version 

Parse  
and unify 

output 

Unified 
JSON  

output   
(meta-data) 

Unified 
JSON input 
(if exists) 

Original  
unmodified 

ad-hoc 
input 

b       = B( c      , f       , s       )   
… … … … 

Formalized function (model)  
of a component behavior 

Flattened JSON vectors 
(either string categories  
or  integer/float values) 

Chaining components (wrappers) to an experimental pipeline for a given research and experimentation scenario 

Public modular auto-tuning and machine  
learning repository and buildbot 

Unified  
web services Interdisciplinary crowd 

Choose 
exploration 

strategy 

Generate choices (code 
sample, data set, compiler, 

flags, architecture …) 

Compile 
source 
code 

Run 
code 

Test 
behavior 
normality 

Pareto 
filter 

Modeling  
and 

prediction 

Complexity 
reduction 

Shared scenarios from past research 

… 



Grigori Fursin        “Collective Mind: making auto-tuning practical using crowdsourcing and predictive modeling”                                                                       13 

Gradually expose 
some characteristics 

Gradually expose 
some choices and features 

 
 

Compile Program time …   compiler flags; pragmas … 

 
 

Run code Run-time 
environment 

time; CPI, power 
consumption … 

pinning/scheduling … 

System cost;  architecture; frequency; cache size… 

Data set size; values; description … precision … 

 
 

 
  

Analyze profile time;  size … instrumentation; profiling … 

Start coarse-grain decomposition of a system (detect coarse-grain effects first). Add universal learning modules. 

Top-down decomposition and learning of computer systems 

Combine expert knowledge with automatic feature learning! 

Start from coarse-grain and gradually move to fine-grain level! 



Grigori Fursin        “Collective Mind: making auto-tuning practical using crowdsourcing and predictive modeling”                                                                       14 

Experimental pipelines for auto-tuning and modeling 

•Init pipeline    
•Detected system information    
•Initialize parameters    
•Prepare dataset    
•Clean program    
•Prepare compiler flags    
•Use compiler profiling    
•Use cTuning CC/MILEPOST GCC for fine-grain program analysis and tuning    
•Use universal Alchemist plugin (with any OpenME-compatible compiler or tool)    
•Use Alchemist plugin (currently for GCC)    
•Build program    
•Get objdump and md5sum (if supported)    
•Use OpenME for fine-grain program analysis and online tuning (build & run)    
•Use 'Intel VTune Amplifier' to collect hardware counters    
•Use 'perf' to collect hardware counters    
•Set frequency (in Unix, if supported)    
•Get system state before execution    
•Run program    
•Check output for correctness (use dataset UID to save different outputs)    
•Finish OpenME    
•Misc info    
•Observed characteristics    
•Observed statistical characteristics    
•Finalize pipeline 



Grigori Fursin        “Collective Mind: making auto-tuning practical using crowdsourcing and predictive modeling”                                                                       15 

Currently prepared experiments 

Our Collective Mind Buildbot supports the following shared benchmarks and 
codelets: 
 
•Polybench - numerical kernels with exposed parameters of all matrices in cM 

• CPU: 28 prepared benchmarks 
• CUDA: 15 prepared benchmarks 
• OpenCL: 15 prepared benchmarks 

• cBench - 23 benchmarks with 20 and 1000 datasets per benchmark 
• Codelets - 44 codelets from embedded domain (provided by CAPS Entreprise) 
• SPEC 2000/2006 
• Description of 32-bit and 64-bit OS: Windows, Linux, Android 
• Description of major compilers: GCC 4.x, LLVM 3.x, Open64/Pathscale 5.x, ICC 12.x 
• Support for collection of hardware counters: perf, Intel vTune 
• Support for frequency modification 
• Validated on laptops, mobiles, tables, GRID/cloud - can work even from the USB key 



Grigori Fursin        “Collective Mind: making auto-tuning practical using crowdsourcing and predictive modeling”                                                                       16 

Multi-objective compiler auto-tuning using mobile phones 

Program:  image corner detection  Processor:  ARM v6, 830MHz 
Compiler:  Sourcery GCC for ARM v4.7.3 OS:  Android OS v2.3.5 
System:  Samsung Galaxy Y  Data set:  MiDataSet #1, image, 600x450x8b PGM, 263KB 

500 combinations of random flags -O3 -f(no-)FLAG 

B
in

ar
y 

si
ze

 (
b

yt
e

s)
 

Execution time (sec.) 

Use Pareto 
frontier filter; 

Pack 
experimental 

data on the fly 
-O3 

Powered by Collective Mind Node (Android Apps on Google Play) 



Grigori Fursin        “Collective Mind: making auto-tuning practical using crowdsourcing and predictive modeling”                                                                       17 

Universal complexity (dimension) reduction 

Found solution 

-O3 -fno-align-functions -fno-align-jumps -fno-align-labels -fno-align-loops -fno-asynchronous-unwind-tables -fno-branch-count-reg -fno-branch-
target-load-optimize2 -fno-btr-bb-exclusive -fno-caller-saves -fno-combine-stack-adjustments -fno-common -fno-compare-elim -fno-conserve-stack -
fno-cprop-registers -fno-crossjumping -fno-cse-follow-jumps -fno-cx-limited-range -fdce -fno-defer-pop -fno-delete-null-pointer-checks -fno-
devirtualize -fno-dse -fno-early-inlining -fno-expensive-optimizations -fno-forward-propagate -fgcse -fno-gcse-after-reload -fno-gcse-las -fno-gcse-lm -
fno-gcse-sm -fno-graphite-identity -fguess-branch-probability -fno-if-conversion -fno-if-conversion2 -fno-inline-functions -fno-inline-functions-called-
once -fno-inline-small-functions -fno-ipa-cp -fno-ipa-cp-clone -fno-ipa-matrix-reorg -fno-ipa-profile -fno-ipa-pta -fno-ipa-pure-const -fno-ipa-reference 
-fno-ipa-sra -fno-ivopts -fno-jump-tables -fno-math-errno -fno-loop-block -fno-loop-flatten -fno-loop-interchange -fno-loop-parallelize-all -fno-loop-
strip-mine -fno-merge-constants -fno-modulo-sched -fmove-loop-invariants -fomit-frame-pointer -fno-optimize-register-move -fno-optimize-sibling-
calls -fno-peel-loops -fno-peephole -fno-peephole2 -fno-predictive-commoning -fno-prefetch-loop-arrays -fno-regmove -fno-rename-registers -fno-
reorder-blocks -fno-reorder-blocks-and-partition -fno-reorder-functions -fno-rerun-cse-after-loop -fno-reschedule-modulo-scheduled-loops -fno-sched-
critical-path-heuristic -fno-sched-dep-count-heuristic -fno-sched-group-heuristic -fno-sched-interblock -fno-sched-last-insn-heuristic -fno-sched-
pressure -fno-sched-rank-heuristic -fno-sched-spec -fno-sched-spec-insn-heuristic -fno-sched-spec-load -fno-sched-spec-load-dangerous -fno-sched-
stalled-insns -fno-sched-stalled-insns-dep -fno-sched2-use-superblocks -fno-schedule-insns -fno-schedule-insns2 -fno-short-enums -fno-signed-zeros -
fno-sel-sched-pipelining -fno-sel-sched-pipelining-outer-loops -fno-sel-sched-reschedule-pipelined -fno-selective-scheduling -fno-selective-scheduling2 
-fno-signaling-nans -fno-single-precision-constant -fno-split-ivs-in-unroller -fno-split-wide-types -fno-strict-aliasing -fno-thread-jumps -fno-trapping-
math -fno-tree-bit-ccp -fno-tree-builtin-call-dce -fno-tree-ccp -fno-tree-ch -fno-tree-copy-prop -fno-tree-copyrename -fno-tree-cselim -fno-tree-dce -
fno-tree-dominator-opts -fno-tree-dse -ftree-forwprop -fno-tree-fre -fno-tree-loop-distribute-patterns -fno-tree-loop-distribution -fno-tree-loop-if-
convert -fno-tree-loop-if-convert-stores -fno-tree-loop-im -fno-tree-loop-ivcanon -fno-tree-loop-optimize -fno-tree-lrs -fno-tree-phiprop -fno-tree-pre -
fno-tree-pta -fno-tree-reassoc -fno-tree-scev-cprop -fno-tree-sink -fno-tree-slp-vectorize -fno-tree-sra -fno-tree-switch-conversion -ftree-ter -fno-tree-
vect-loop-version -fno-tree-vectorize -fno-tree-vrp -fno-unroll-all-loops -fno-unsafe-loop-optimizations -fno-unsafe-math-optimizations -funswitch-
loops -fno-variable-expansion-in-unroller -fno-vect-cost-model -fno-web 

Not very useful for analysis 



Grigori Fursin        “Collective Mind: making auto-tuning practical using crowdsourcing and predictive modeling”                                                                       18 

Universal complexity (dimension) reduction 

Found solution 

-O3 -fno-align-functions -fno-align-jumps -fno-align-labels -fno-align-loops -fno-asynchronous-unwind-tables -fno-branch-count-reg -fno-branch-
target-load-optimize2 -fno-btr-bb-exclusive -fno-caller-saves -fno-combine-stack-adjustments -fno-common -fno-compare-elim -fno-conserve-stack -
fno-cprop-registers -fno-crossjumping -fno-cse-follow-jumps -fno-cx-limited-range -fdce -fno-defer-pop -fno-delete-null-pointer-checks -fno-
devirtualize -fno-dse -fno-early-inlining -fno-expensive-optimizations -fno-forward-propagate -fgcse -fno-gcse-after-reload -fno-gcse-las -fno-gcse-lm -
fno-gcse-sm -fno-graphite-identity -fguess-branch-probability -fno-if-conversion -fno-if-conversion2 -fno-inline-functions -fno-inline-functions-called-
once -fno-inline-small-functions -fno-ipa-cp -fno-ipa-cp-clone -fno-ipa-matrix-reorg -fno-ipa-profile -fno-ipa-pta -fno-ipa-pure-const -fno-ipa-reference 
-fno-ipa-sra -fno-ivopts -fno-jump-tables -fno-math-errno -fno-loop-block -fno-loop-flatten -fno-loop-interchange -fno-loop-parallelize-all -fno-loop-
strip-mine -fno-merge-constants -fno-modulo-sched -fmove-loop-invariants -fomit-frame-pointer -fno-optimize-register-move -fno-optimize-sibling-
calls -fno-peel-loops -fno-peephole -fno-peephole2 -fno-predictive-commoning -fno-prefetch-loop-arrays -fno-regmove -fno-rename-registers -fno-
reorder-blocks -fno-reorder-blocks-and-partition -fno-reorder-functions -fno-rerun-cse-after-loop -fno-reschedule-modulo-scheduled-loops -fno-sched-
critical-path-heuristic -fno-sched-dep-count-heuristic -fno-sched-group-heuristic -fno-sched-interblock -fno-sched-last-insn-heuristic -fno-sched-
pressure -fno-sched-rank-heuristic -fno-sched-spec -fno-sched-spec-insn-heuristic -fno-sched-spec-load -fno-sched-spec-load-dangerous -fno-sched-
stalled-insns -fno-sched-stalled-insns-dep -fno-sched2-use-superblocks -fno-schedule-insns -fno-schedule-insns2 -fno-short-enums -fno-signed-zeros -
fno-sel-sched-pipelining -fno-sel-sched-pipelining-outer-loops -fno-sel-sched-reschedule-pipelined -fno-selective-scheduling -fno-selective-scheduling2 
-fno-signaling-nans -fno-single-precision-constant -fno-split-ivs-in-unroller -fno-split-wide-types -fno-strict-aliasing -fno-thread-jumps -fno-trapping-
math -fno-tree-bit-ccp -fno-tree-builtin-call-dce -fno-tree-ccp -fno-tree-ch -fno-tree-copy-prop -fno-tree-copyrename -fno-tree-cselim -fno-tree-dce -
fno-tree-dominator-opts -fno-tree-dse -ftree-forwprop -fno-tree-fre -fno-tree-loop-distribute-patterns -fno-tree-loop-distribution -fno-tree-loop-if-
convert -fno-tree-loop-if-convert-stores -fno-tree-loop-im -fno-tree-loop-ivcanon -fno-tree-loop-optimize -fno-tree-lrs -fno-tree-phiprop -fno-tree-pre -
fno-tree-pta -fno-tree-reassoc -fno-tree-scev-cprop -fno-tree-sink -fno-tree-slp-vectorize -fno-tree-sra -fno-tree-switch-conversion -ftree-ter -fno-tree-
vect-loop-version -fno-tree-vectorize -fno-tree-vrp -fno-unroll-all-loops -fno-unsafe-loop-optimizations -fno-unsafe-math-optimizations -funswitch-
loops -fno-variable-expansion-in-unroller -fno-vect-cost-model -fno-web 

b       =                          B( c        )   
… … 

Chain complexity reduction filter 
remove dimensions (or set to default) 

iteratively, ANOVA, PCA, etc… 

Auto-tuning  
experimental  

pipeline 



Grigori Fursin        “Collective Mind: making auto-tuning practical using crowdsourcing and predictive modeling”                                                                       19 

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

0 10 20 30 40 50 60 70 80

P
ro

b
a
b

il
it

y

Optimizations

Start: 50% probability to select optimization (uniform distribution) 

Avoiding collection of huge amount of data -  

filtering (compacting) and learning space on the fly 

Active learning to systematize and focus exploration  



Grigori Fursin        “Collective Mind: making auto-tuning practical using crowdsourcing and predictive modeling”                                                                       20 

Current random selection of optimizations increased execution time (bad):  

reduce probabilities of the selected optimizations 

Active learning to systematize and focus exploration  



Grigori Fursin        “Collective Mind: making auto-tuning practical using crowdsourcing and predictive modeling”                                                                       21 

Current random selection of optimizations improved execution time (good):  

reward probabilities of the selected optimizations 

Active learning to systematize and focus exploration  



Grigori Fursin        “Collective Mind: making auto-tuning practical using crowdsourcing and predictive modeling”                                                                       22 

A – Break up large expression trees 

B – Value propagation 

C – Hoisting of loop invariants 

D – Loop normalization 

E – Loop unrolling 

F – Mark constant variables 

G – Dismantle array instructions 

H – Eliminating copies 

A B 
C D 

E 

F G H 

“good optimizations” across all programs: 

Faster then traditional search (~50 iterations). 

Can stuck in local minima 

Speedups 1.1-2x. Sometimes better to reduce 

Intel compiler optimization level! 

Active learning to systematize and focus exploration  



Grigori Fursin        “Collective Mind: making auto-tuning practical using crowdsourcing and predictive modeling”                                                                       23 

14 transformations, sequences of length 5, search space = 396000 

• F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M.F.P. O'Boyle, J. Thomson, M. Toussaint and C.K.I. Williams.  

Using Machine Learning to Focus Iterative Optimization. Proceedings of the 4th Annual International Symposium on Code 

Generation and Optimization (CGO), New York, NY, USA, March 2006 

Active learning to systematize and focus exploration  



Grigori Fursin        “Collective Mind: making auto-tuning practical using crowdsourcing and predictive modeling”                                                                       24 

Universal complexity (dimension) reduction 

Found solution 

-O3 -fno-align-functions -fno-align-jumps -fno-align-labels -fno-align-loops -fno-asynchronous-unwind-tables -fno-branch-count-reg -fno-branch-
target-load-optimize2 -fno-btr-bb-exclusive -fno-caller-saves -fno-combine-stack-adjustments -fno-common -fno-compare-elim -fno-conserve-stack -
fno-cprop-registers -fno-crossjumping -fno-cse-follow-jumps -fno-cx-limited-range -fdce -fno-defer-pop -fno-delete-null-pointer-checks -fno-
devirtualize -fno-dse -fno-early-inlining -fno-expensive-optimizations -fno-forward-propagate -fgcse -fno-gcse-after-reload -fno-gcse-las -fno-gcse-lm -
fno-gcse-sm -fno-graphite-identity -fguess-branch-probability -fno-if-conversion -fno-if-conversion2 -fno-inline-functions -fno-inline-functions-called-
once -fno-inline-small-functions -fno-ipa-cp -fno-ipa-cp-clone -fno-ipa-matrix-reorg -fno-ipa-profile -fno-ipa-pta -fno-ipa-pure-const -fno-ipa-reference 
-fno-ipa-sra -fno-ivopts -fno-jump-tables -fno-math-errno -fno-loop-block -fno-loop-flatten -fno-loop-interchange -fno-loop-parallelize-all -fno-loop-
strip-mine -fno-merge-constants -fno-modulo-sched -fmove-loop-invariants -fomit-frame-pointer -fno-optimize-register-move -fno-optimize-sibling-
calls -fno-peel-loops -fno-peephole -fno-peephole2 -fno-predictive-commoning -fno-prefetch-loop-arrays -fno-regmove -fno-rename-registers -fno-
reorder-blocks -fno-reorder-blocks-and-partition -fno-reorder-functions -fno-rerun-cse-after-loop -fno-reschedule-modulo-scheduled-loops -fno-sched-
critical-path-heuristic -fno-sched-dep-count-heuristic -fno-sched-group-heuristic -fno-sched-interblock -fno-sched-last-insn-heuristic -fno-sched-
pressure -fno-sched-rank-heuristic -fno-sched-spec -fno-sched-spec-insn-heuristic -fno-sched-spec-load -fno-sched-spec-load-dangerous -fno-sched-
stalled-insns -fno-sched-stalled-insns-dep -fno-sched2-use-superblocks -fno-schedule-insns -fno-schedule-insns2 -fno-short-enums -fno-signed-zeros -
fno-sel-sched-pipelining -fno-sel-sched-pipelining-outer-loops -fno-sel-sched-reschedule-pipelined -fno-selective-scheduling -fno-selective-scheduling2 
-fno-signaling-nans -fno-single-precision-constant -fno-split-ivs-in-unroller -fno-split-wide-types -fno-strict-aliasing -fno-thread-jumps -fno-trapping-
math -fno-tree-bit-ccp -fno-tree-builtin-call-dce -fno-tree-ccp -fno-tree-ch -fno-tree-copy-prop -fno-tree-copyrename -fno-tree-cselim -fno-tree-dce -
fno-tree-dominator-opts -fno-tree-dse -ftree-forwprop -fno-tree-fre -fno-tree-loop-distribute-patterns -fno-tree-loop-distribution -fno-tree-loop-if-
convert -fno-tree-loop-if-convert-stores -fno-tree-loop-im -fno-tree-loop-ivcanon -fno-tree-loop-optimize -fno-tree-lrs -fno-tree-phiprop -fno-tree-pre -
fno-tree-pta -fno-tree-reassoc -fno-tree-scev-cprop -fno-tree-sink -fno-tree-slp-vectorize -fno-tree-sra -fno-tree-switch-conversion -ftree-ter -fno-tree-
vect-loop-version -fno-tree-vectorize -fno-tree-vrp -fno-unroll-all-loops -fno-unsafe-loop-optimizations -fno-unsafe-math-optimizations -funswitch-
loops -fno-variable-expansion-in-unroller -fno-vect-cost-model -fno-web 

Pruned solution 

-O3 
 -fno-align-functions              (15% of speedup) 
-fdce  
-fgcse  
-fguess-branch-probability    (70% of speedup) 
-fmove-loop-invariants  
-fomit-frame-pointer  
-ftree-ter  
-funswitch-loops   
-fno-ALL 

b       =                          B( c        )   
… … 

Chain complexity reduction filter 
remove dimensions (or set to default) 

iteratively, ANOVA, PCA, etc… 

Auto-tuning  
experimental  

pipeline 



Grigori Fursin        “Collective Mind: making auto-tuning practical using crowdsourcing and predictive modeling”                                                                       25 

Online optimization clustering 

Continuously crowdtuning 285 shared code and dataset combinations from 8 benchmarks 
including NAS, MiBench, SPEC2000, SPEC2006, Powerstone, UTDSP and SNU-RT  

using GRID 5000; Intel E5520, 2.6MHz;  
GCC 4.6.3; at least 5000 random combinations of flags 

 



Grigori Fursin        “Collective Mind: making auto-tuning practical using crowdsourcing and predictive modeling”                                                                       26 

Current machine learning usage 

… 

… 

… 

… 

… 

… 

… 

c (choices) 

Training set: distinct combination of  compiler optimizations (clusters) 

Some ad-hoc 
predictive model 

 
Some ad-hoc 

features Optimization 

cluster 

f (features) 

MILEPOST GCC 
features,  
hardware counters 



Grigori Fursin        “Collective Mind: making auto-tuning practical using crowdsourcing and predictive modeling”                                                                       27 

Current machine learning usage 

… 

… 

… 

… 

… 

… 

… 

c (choices) 

Training set: distinct combination of  compiler optimizations (clusters) 

Some ad-hoc 
predictive model 

 
Some ad-hoc 

features 

… 

Optimization 

cluster 

Unseen program 

f (features) 

Optimization 

cluster 

… 
c (choices) 

P
re

d
ic

ti
o

n
 

f (features) 

MILEPOST GCC 
features,  
hardware counters 



Grigori Fursin        “Collective Mind: making auto-tuning practical using crowdsourcing and predictive modeling”                                                                       28 

Current machine learning usage 

… 

… 

… 

… 

… 

… 

… 

c (choices) 

Training set: distinct combination of  compiler optimizations (clusters) 

f (features) 

MILEPOST GCC 
features,  
hardware counters 

Some ad-hoc 
predictive model 

 
Some ad-hoc 

features 

… 

Optimization 

cluster 

Unseen program 

f (features) 

Optimization 

cluster 

… 
c (choices) 

P
re

d
ic

ti
o

n
 

Number of code 
and dataset 
samples 

Prediction accuracy 
using optimized 
SVM, KNN 

12  87% 

Previous 
limited 
studies 



Grigori Fursin        “Collective Mind: making auto-tuning practical using crowdsourcing and predictive modeling”                                                                       29 

Current machine learning usage 

… 

… 

… 

… 

… 

… 

… 

c (choices) 

Training set: distinct combination of  compiler optimizations (clusters) 

Some ad-hoc 
predictive model 

 
Some ad-hoc 

features 

… 

Optimization 

cluster 

Unseen program 

f (features) 

Optimization 

cluster 

… 
c (choices) 

P
re

d
ic

ti
o

n
 

Number of code 
and dataset 
samples 

Prediction accuracy 
using optimized 
SVM, KNN 

12  87% 

285 56% (no prediction) f (features) 

MILEPOST GCC 
features,  
hardware counters 



Grigori Fursin        “Collective Mind: making auto-tuning practical using crowdsourcing and predictive modeling”                                                                       30 

Learning features by domain specialists 

Class -O3 -O3 -fno-if-conversion 

Shared data  
set sample1 

 
 

reference execution time no change 

Shared data  
set sample2 

 

no change +17.3% improvement 

Image B&W threshold filter        *matrix_ptr2++ = (temp1 > T) ? 255 : 0; 



Grigori Fursin        “Collective Mind: making auto-tuning practical using crowdsourcing and predictive modeling”                                                                       31 

Learning features by domain specialists 

Class -O3 -O3 -fno-if-conversion 

Shared data  
set sample1 

 
Monitored 
during day 

 

reference execution time no change 

Shared data  
set sample2 

 
Monitored 

during night 

no change +17.3% improvement 

Image B&W threshold filter        *matrix_ptr2++ = (temp1 > T) ? 255 : 0; 



Grigori Fursin        “Collective Mind: making auto-tuning practical using crowdsourcing and predictive modeling”                                                                       32 

Learning feature by domain specialists 

Class -O3 -O3 -fno-if-conversion 

Shared data  
set sample1 

 
Monitored 
during day 

 

reference execution time no change 

Shared data  
set sample2 

 
Monitored 

during night 

no change +17.3% improvement 

if get_feature(TIME_OF_THE_DAY)==NIGHT        bw_filter_codelet_day(buffers); 

else                                                                          bw_filter_codelet_night(buffers); 

Feature “TIME_OF_THE_DAY” related to algorithm, data set and run-time  

Can’t be found by ML - simply does not exist in the system! 

Need split-compilation (cloning and run-time adaptation) 

Image B&W threshold filter        *matrix_ptr2++ = (temp1 > T) ? 255 : 0; 



Grigori Fursin        “Collective Mind: making auto-tuning practical using crowdsourcing and predictive modeling”                                                                       33 

Normality test plugin 

Execution time (sec.) 

D
is

tr
ib

u
ti

o
n

 

Class A              Class B 

Unexpected behavior - expose to the community including domain specialists, 
explain, find missing feature and add to the system 



Grigori Fursin        “Collective Mind: making auto-tuning practical using crowdsourcing and predictive modeling”                                                                       34 

Normality test plugin 

Execution time (sec.) 

D
is

tr
ib

u
ti

o
n

 

Class A              Class B 

800MHz                                                  2400MHz 
CPU Frequency 

Unexpected behavior - expose to the community including domain specialists, 
explain, find missing feature and add to the system 



Grigori Fursin        “Collective Mind: making auto-tuning practical using crowdsourcing and predictive modeling”                                                                       35 

0 

1 

2 

3 

4 

5 

6 

P
ro

g
ra

m
 /

 a
rc

h
it

e
c
tu

re
 b

e
h

a
v

io
r:

 C
P

I 

How we can explain the following observations for some piece of code (“codelet object”)? 

(LU-decomposition codelet, Intel Nehalem) 

Using Collective Mind to explore and learn behavior of computer systems 



Grigori Fursin        “Collective Mind: making auto-tuning practical using crowdsourcing and predictive modeling”                                                                       36 

Add 1 property: matrix size 

0 

1 

2 

3 

4 

5 

6 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 

P
ro

g
ra

m
 /

 a
rc

h
it

e
c
tu

re
 b

e
h

a
v

io
r:

 C
P

I 

Dataset property: matrix size 

Using Collective Mind to explore and learn behavior of computer systems 



Grigori Fursin        “Collective Mind: making auto-tuning practical using crowdsourcing and predictive modeling”                                                                       37 

Either fit existing or build a new model to correlate objectives (CPI) and features (matrix size) 
while minimizing RMSE. 

Apply shared models, start from simple cases: linear regression (detect coarse grain effects) 

0 

1 

2 

3 

4 

5 

6 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 

P
ro

g
ra

m
 /

 a
rc

h
it

e
c
tu

re
 b

e
h

a
v

io
r:

 C
P

I 

Dataset property: matrix size 

Using Collective Mind to explore and learn behavior of computer systems 



Grigori Fursin        “Collective Mind: making auto-tuning practical using crowdsourcing and predictive modeling”                                                                       38 

0 

1 

2 

3 

4 

5 

6 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 

P
ro

g
ra

m
 /

 a
rc

h
it

e
c
tu

re
 b

e
h

a
v

io
r:

 C
P

I 

Dataset properties: matrix size 

If more observations, validate model and detect discrepancies! 

Continuously retrain models to fit new data! 

Use model to “focus” exploration on “unusual” behavior! 

Using Collective Mind to explore and learn behavior of computer systems 



Grigori Fursin        “Collective Mind: making auto-tuning practical using crowdsourcing and predictive modeling”                                                                       39 

Gradually increase model complexity if needed (hierarchical modeling).  
For example, detect fine-grain effects (singularities) and characterize them. 

0 

1 

2 

3 

4 

5 

6 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 

P
ro

g
ra

m
 /

 a
rc

h
it

e
c
tu

re
 b

e
h

a
v

io
r:

 C
P

I 

Dataset properties: matrix size 

Using Collective Mind to explore and learn behavior of computer systems 



Grigori Fursin        “Collective Mind: making auto-tuning practical using crowdsourcing and predictive modeling”                                                                       40 

Start adding more properties (one more architecture with twice bigger cache)! 

Use automatic approach to correlate all objectives and features. 

0 

1 

2 

3 

4 

5 

6 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 

P
ro

g
ra

m
 /

 a
rc

h
it

e
c
tu

re
 b

e
h

a
v

io
r:

 C
P

I 

Dataset properties: matrix size 

L3 = 4Mb 

L3 = 8Mb 

Using Collective Mind to explore and learn behavior of computer systems 



Grigori Fursin        “Collective Mind: making auto-tuning practical using crowdsourcing and predictive modeling”                                                                       41 

Continuously build and refine 
classification (decision trees for 

example) and predictive models on all 
collected data to improve predictions. 

Continue exploring design and 
optimization spaces  

(evaluate different architectures, 
optimizations, compilers, etc.) 

Focus exploration on unexplored 
areas, areas with high variability 

or with high mispredict rate of models  

β 

ε cM predictive model module 

CPI = ε + 1000 × β × data size 

Using Collective Mind to explore and learn behavior of computer systems 



Grigori Fursin        “Collective Mind: making auto-tuning practical using crowdsourcing and predictive modeling”                                                                       42 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 

0 

1 

2 

3 

4 

5 

6 

Dataset features: matrix size 

C
o

d
e
/a

rc
h

it
e
c
tu

re
 b

e
h

a
v

io
r:

 C
P

I 

Size < 1012 

1012 < Size < 2042 

Size > 2042 & GCC 

Size > 2042 & ICC & O2 

Size > 2042 & ICC & O3 

Optimize decision tree (many different algorithms) 
Balance precision vs cost of modeling = ROI (coarse-grain vs fine-grain effects) 

Compact data on-line before sharing with other users! 

Complexity reduction 



Grigori Fursin        “Collective Mind: making auto-tuning practical using crowdsourcing and predictive modeling”                                                                       43 

Many new research and development opportunities 

• Researchers  can quickly replay, reproduce and validate existing results, and 
focus their effort on either feature learning and predictive models or on 
novel approaches combined with auto-tuning and machine learning 

• Developers can produce tools immediately compatible with collective 
methodology and infrastructure 

• Any person can join collaborative effort to build or extend global expert 
system that uses Collective Knowledge to: 

• quickly identify program and architecture behavior anomalies 
• suggest better multi-objective program optimizations and hardware 
configuration for a given user scenario (requirements) 
• suggest run-time adaptation scenarios (co-design and co-optimization) 
• eventually enable self-tuning computer systems 



Grigori Fursin        “Collective Mind: making auto-tuning practical using crowdsourcing and predictive modeling”                                                                       44 

Gradually expose 
some characteristics 

Gradually expose 
some choices and features 

Algorithm 
selection 

(time) productivity, variable-
accuracy, complexity … 

Language, MPI, OpenMP, TBB, MapReduce … 

Compile Program time …   compiler flags; pragmas … 

Code analysis & 
Transformations 

time;   
memory usage;  
code size … 

transformation ordering;   
polyhedral transformations;  
transformation parameters; 
instruction ordering … 
 

Process 

Thread 

Function 

Codelet 

Loop 

Instruction 

Run code Run-time 
environment 

time; power consumption … pinning/scheduling … 

System cost; size … CPU/GPU; frequency; memory  hierarchy … 

Data set size; values; description … precision … 

Run-time 
analysis 

time;  precision … hardware counters; power meters … 

Run-time state processor state; cache state 
…  

helper threads; hardware counters … 

Analyze profile time;  size … instrumentation; profiling … 

Coarse-grain vs. fine-grain effects: depends on user requirements and expected ROI 

Gradually and collaboratively increase granularity and complexity 



Grigori Fursin        “Collective Mind: making auto-tuning practical using crowdsourcing and predictive modeling”                                                                       45 

• Infrastructure is available under standard BSD license at http://cTuning.org/tools/cm 

• Pilot repository is available at http://c-mind.org/repo  

 (hundreds of kernels, thousands of datasets, tools, models, etc) 

•Collective Mind concept requires community effort at all levels (sharing benchmarks and data sets, 
providing wrappers, finding features, improving models) - currently building community around this 
concept and infrastructure with a focus on: 

 

Current status 

Grigori Fursin, “Collective Mind: cleaning up the research and experimentation mess in computer engineering using crowdsourcing, 
big data and machine learning”,  INRIA Tech. report No 00850880, August 2013  

http://hal.inria.fr/hal-00850880  http://arxiv.org/abs/1308.2410 

Education Academic research Validation in industry 

 
 
 
 
Reproducible and collaborative 
research; new publication model 
where results are validated by the 
community. 
 
• Panel at ADAPT 2014 @ HiPEAC 2014 

http://adapt-workshop.org 
• REPRODUCE 2014 @ HPCA 2014 

www.occamportal.org/reproduce 
• Special journal issue on reproducible 
research in ACM TET 

 
• Systematizing, validating, sharing 

past research knowledge and 
practical experience during auto-
tuning  and ML 
 

• Optimal feature and model 
selection 
 

• Compacting and systematizing 
benchmarks and data sets 
 

• Run-time adaptation and ML 

 
 

• Most of techniques have been 
validated in industry with IBM, 
ARM, Intel, ARC (Synopsys), CAPS, 
STMicroelectronics 
 

• Continue extrapolating collected 
knowledge to build faster and more 
power efficient computer systems 
to continue innovation in science 
and technology! 



Grigori Fursin        “Collective Mind: making auto-tuning practical using crowdsourcing and predictive modeling”                                                                       46 

Acknowledgements 

• My 2 PhD students: 

Abdul Memon and Yuriy Kashnikov 

• Colleagues from STMicroelectronics (France): 

Christophe Guillone, Antoine Moynault, Christian Bertin 

• Colleagues from ARM (UK): Anton Lokhmotov 

• Colleagues from NCAR (USA):  Davide Del Vento and his interns 

• Colleagues from CAPS Entreprise (France): Francois Bodin 

• Colleagues from Intel (USA): David Kuck and David Wong 

• cTuning community:  
http://cTuning.org/lab/people 

 

 

• EU FP6, FP7 program and HiPEAC network of excellence 
http://www.hipeac.net 



c-mind.org 
Collective Mind Repository and Infrastructure 

Systematic application and architecture analysis, characterization and optimization  
through collaborative knowledge discorvery, systematization, sharing and reuse 

Thank you for your attention! 

Contact:   Grigori.Fursin@cTuning.org 

http://cTuning.org/lab/people/gfursin 

Gradual parameterization 
and unification of interfaces 

of computing systems 

Open repository to share 
optimization cases 

and programs 

Modeling and advice system to 
predict optimizations, architecture 
designs, run-time adaptation, etc 


