

Active-Learning-Based Surrogate Models for Empirical Performance Tuning

Prasanna Balaprakash

Joint work with

R. B. Gramacy* and S. M. Wild

Mathematics and Computer Science Division Argonne National Laboratory Argonne, IL

> *Booth School of Business University of Chicago, IL

The 10th workshop of the INRIA-Illinois-ANL Joint Laboratory, NCSA, IL, 2013

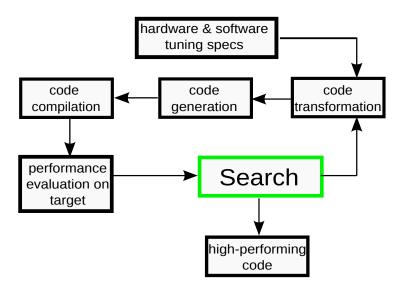
Motivation: road to 10^{18} by 2018

No exascale for you! — H. Simon, LBNL, 2013

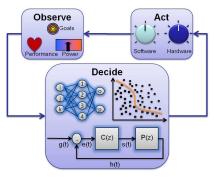
- power is a primary design constraint
- exponential growth of parallelism
- \diamond compute growing 2x faster than memory and bandwidth
- data movement cost more than that of FLOPS
- need more heterogeneity
- hardware errors

Automatic performance tuning

Given an application & a target architecture:



Performance models in autotuning



2,048
(Guo 32)

Single-precision peak

+SFU

No SFU, no FMA

No SFU, no FMA

No SFU, no FMA

No SFU, no FMA

1/16 1/8 1/4 1/2 1 2 4 8 16 32 64 128 256

Operational intensity (flops/byte)

See [H. Hoffmann, World Changing Ideas, SA 2009]

See [S. Williams et al., ACM 2009]

- insights on important knobs that impacts performance
- avoid running the corresponding code configuration on the target
- can help prune large search spaces

Machine learning for performance modeling

- algebraic performance models increasingly challenging
- statistical performance models: an effective alternative
- small number of input-output points obtained from empirical evaluation
- $^{\diamond}$ deployed to test and/or aid search, compiler, and autotuning

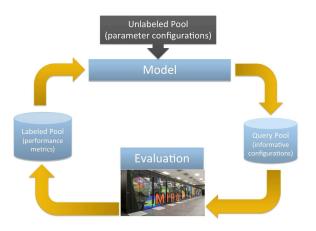
Machine learning for performance modeling

- algebraic performance models increasingly challenging
- statistical performance models: an effective alternative
- small number of input-output points obtained from empirical evaluation
- deployed to test and/or aid search, compiler, and autotuning

Goal

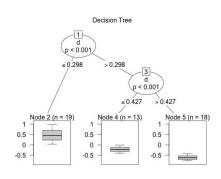
efficiently using HPC systems to minimize the number of expensive evaluations on the target machine

Active learning for performance modeling



- key idea: greater accuracy with fewer training points when allowed to choose the training data
- actively query the model to assess predictive variance

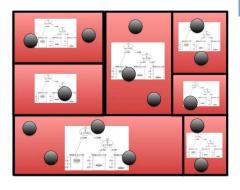
 Based on a classical nonparametric (do not rely on data belonging to any particular distribution) modeling technique [M. Taddy et al. 2011]



Algorithm

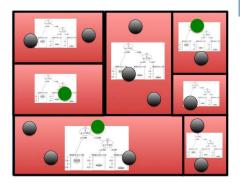
 trees to represent input-output relationships using binary recursive partitioning

 Based on a classical nonparametric (do not rely on data belonging to any particular distribution) modeling technique [M. Taddy et al. 2011]



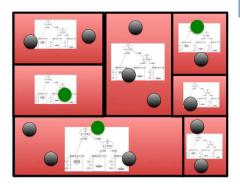
- trees to represent input-output relationships using binary recursive partitioning
- the covariate space is partitioned into a set of hyper-rectangles
- a simple tree model is fit within each rectangle

 Based on a classical nonparametric (do not rely on data belonging to any particular distribution) modeling technique [M. Taddy et al. 2011]



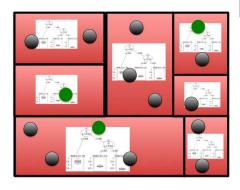
- trees to represent input-output relationships using binary recursive partitioning
- the covariate space is partitioned into a set of hyper-rectangles
- a simple tree model is fit within each rectangle
- generate a pool of unlabeled points

 Based on a classical nonparametric (do not rely on data belonging to any particular distribution) modeling technique [M. Taddy et al. 2011]



- trees to represent input-output relationships using binary recursive partitioning
- the covariate space is partitioned into a set of hyper-rectangles
- a simple tree model is fit within each rectangle
- generate a pool of unlabeled points
- selection: maximize the expected reduction in predictive variance

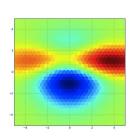
◆ Based on a classical nonparametric (do not rely on data belonging to any particular distribution) modeling technique [M. Taddy et al. 2011]



- trees to represent input-output relationships using binary recursive partitioning
- the covariate space is partitioned into a set of hyper-rectangles
- a simple tree model is fit within each rectangle
- generate a pool of unlabeled points
- selection: maximize the expected reduction in predictive variance

 \diamond batch (n_b) of inputs, taken collectively, will lead to updates that are better than one-at-a-time schemes

The ab-dynaTree algorithm



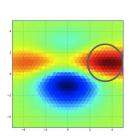
 select points and evaluate concurrently

 \diamond batch (n_b) of inputs, taken collectively, will lead to updates that are better than one-at-a-time schemes

2 2 2 2

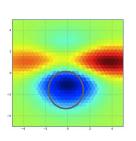
- select points and evaluate concurrently
- issue: other configurations in the batch become less informative

 \diamond batch (n_b) of inputs, taken collectively, will lead to updates that are better than one-at-a-time schemes



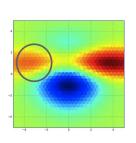
- select points and evaluate concurrently
- issue: other configurations in the batch become less informative
- condition sampling on tentative evaluations

 batch (n_b) of inputs, taken collectively, will lead to updates that are better than one-at-a-time schemes



- select points and evaluate concurrently
- issue: other configurations in the batch become less informative
- condition sampling on tentative evaluations

 batch (n_b) of inputs, taken collectively, will lead to updates that are better than one-at-a-time schemes

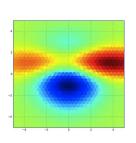


The ab-dynaTree algorithm

- select points and evaluate concurrently
- issue: other configurations in the batch become less informative
- condition sampling on tentative evaluations

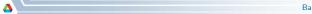
better exploration

 batch (n_b) of inputs, taken collectively, will lead to updates that are better than one-at-a-time schemes





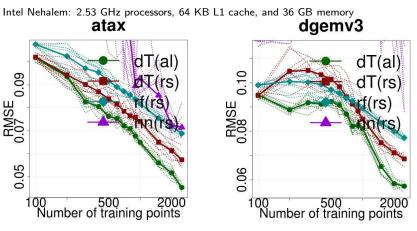
- select points and evaluate concurrently
- issue: other configurations in the batch become less informative
- condition sampling on tentative evaluations
- better exploration
- leads to better surrogates with minimum evaluations



Experimental setup

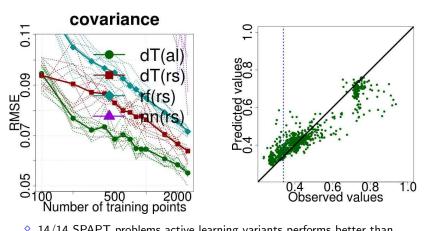
- SPAPT test suite [Balaprakash, Norris, & Wild, ICCS '12]
 - elementary linear algebra, linear solver, stencil codes, elementary data mining
 - SPAPT problem = code + set of transformations + parameter specifications + constraints + input size
 - Orio framework [Hartono, Norris, & Sadayappan, IPDPS '09]
- ab-dynaTree algorithm with a maximum budget of 2,500 evaluations $(\mathcal{X}_{\mathrm{out}},\,\mathcal{Y}_{\mathrm{out}})$
- three non linear regression algorithms: dynaTrees algorithm (dT), random forest (rf), neural networks (nn)
- \diamond active learning (al) variants: $(\mathcal{X}_{\mathrm{out}}, \mathcal{Y}_{\mathrm{out}})$ as the training set
- random sampling (rs) variants: 2,500 randomly chosen points
- $^{\diamond}$ test set $\mathcal{T}_{25\%}$: the subset of data points whose mean run times are within the lower 25% quartile of the empirical distribution for the run times
- oroot-mean-squared error (RMSE) as a measure of prediction accuracy

Modeling runtimes of SPAPT kernels



Double win: Better RMSE, less evaluations (=time/evaluation)

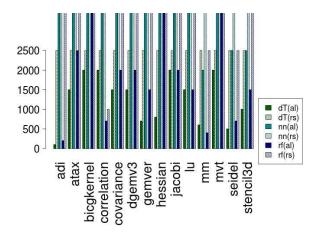
Modeling runtimes of SPAPT kernels



 14/14 SPAPT problems active learning variants performs better than random search variants

Modeling runtimes of SPAPT kernels

♦ dT(rs) with 2,500 evaluations as a baseline



Savings up to a factor of six

Comparison between regression algorithms

Table: RMSE averaged over 10 replications on the $\mathcal{T}_{25\%}$ test set for 2,500 training points: italics (bold) when a variant is significantly worse (better) than dT(al) according to a t-test with significance (alpha) level 0.05.

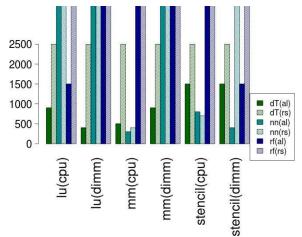
Problem	dT(al)	dT(rs)	nn(al)	nn(rs)	rf(al)	rf(rs)
adi	0.021	0.025	0.034	0.031	0.022	0.025
atax	0.045	0.057	0.064	0.072	0.056	0.069
bicgkernel	0.021	0.024	0.038	0.043	0.032	0.038
correlation	0.060	0.066	0.212	0.199	0.053	0.057
covariance	0.055	0.064	0.104	0.114	0.059	0.072
dgemv3	0.057	0.069	0.100	0.137	0.065	0.077
gemver	0.100	0.120	0.155	0.180	0.103	0.132
hessian	0.045	0.054	0.059	0.070	0.070	0.094
jacobi	0.029	0.045	0.058	0.057	0.044	0.053
lu	0.037	0.060	0.072	0.084	0.050	0.067
mm	0.064	0.079	0.078	0.079	0.061	0.075
mvt	0.032	0.036	0.044	0.053	0.044	0.053
seidel	0.076	0.097	0.092	0.098	0.080	0.095
stencil3d	0.080	0.100	0.100	0.122	0.084	0.105

[⋄] dT(al) and nn(al) are similar due to expensive parameter tuning of nn

Modeling power in HPC kernels

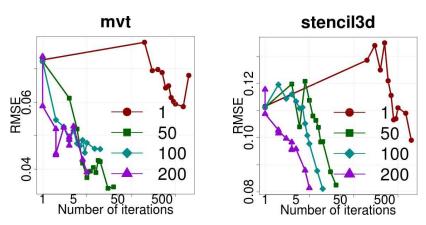
Intel Xeon E5530, 32 KB L1, 256 KB L2 (data from [Tiwari et al., IPDPSW '12])

♦ dT(rs) with 2,500 evaluations as a baseline



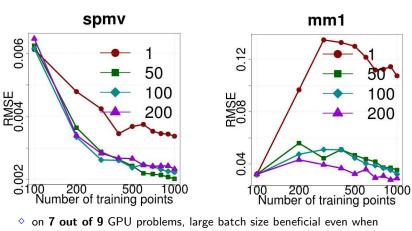
savings up to a factor of four

Impact of batch size (n_b) in ab-dynaTree



- \diamond $n_b>1$: explore and identify multiple regions in the input space
- \diamond $n_b=1$: high probability of sampling from only one promising region

Impact of batch size (n_b) in ab-dynaTree for GPU kernels



on **7 out of 9** GPU problems, large batch size beneficial even when concurrent evaluations are not feasible

Summary

- ab-dynaTree for developing empirical performance models
- active learning as an effective data acquisition strategy
- batch mode of provides significant benefits over the classical, serial mode: high degree of exploration

use active learning for empirical performance modeling

Future work

- asynchronous model updates
- multiobjective surrogate modeling
- structure exploiting numerical optimization algorithms
- deployment of ab-dynaTree in autotuning search algorithms

References

- P. Balaprakash, R. Gramacy, and S. M. Wild. Active-learning-based surrogate models for empirical performance tuning. IEEE Cluster, 2013
- P. Balaprakash, A. Tiwari, and S. M. Wild. Multi-objective optimization of HPC kernels for performance, power, and energy. PMBS 13, 2013
- P. Balaprakash, S. M. Wild, and P. Hovland, Can search algorithms save large-scale automatic performance tuning? ICCS 2011
- P. Balaprakash, S. M. Wild, and B. Norris. SPAPT: Search problems in automatic performance tuning, ICCS 2012
- A. Hartono, B. Norris, and P. Sadayappan. Annotation-based empirical performance tuning using Orio, IPDPS, 2009

 \rightarrow Thank you!

