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Motivation: road to 10
18 by 2018

No exascale for you! — H. Simon, LBNL, 2013

⋄ power is a primary design constraint

⋄ exponential growth of parallelism

⋄ compute growing 2x faster than memory and bandwidth

⋄ data movement cost more than that of FLOPS

⋄ need more heterogeneity

⋄ hardware errors
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The Rest of This Talk:

Tackling the Tornado

Automatic Performance Tuning

Performance Modeling

Active Learning

Experimental Results



Automatic performance tuning
Given an application & a target architecture:
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Performance models in autotuning

See [H. Hoffmann, World Changing Ideas,

SA 2009]

See [S. Williams et al., ACM 2009]

⋄ insights on important knobs that impacts performance

⋄ avoid running the corresponding code configuration on the target

⋄ can help prune large search spaces
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Machine learning for performance modeling

⋄ algebraic performance models increasingly challenging

⋄ statistical performance models: an effective alternative

⋄ small number of input-output points obtained from empirical evaluation

⋄ deployed to test and/or aid search, compiler, and autotuning
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Machine learning for performance modeling

⋄ algebraic performance models increasingly challenging

⋄ statistical performance models: an effective alternative

⋄ small number of input-output points obtained from empirical evaluation

⋄ deployed to test and/or aid search, compiler, and autotuning

Goal

efficiently using HPC systems to minimize the number of expensive evaluations
on the target machine
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Active learning for performance modeling

⋄ key idea: greater accuracy with fewer training points when allowed to
choose the training data

⋄ actively query the model to assess predictive variance
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Active learning using dynaTrees

⋄ Based on a classical nonparametric (do not rely on data belonging to any
particular distribution) modeling technique [M. Taddy et al. 2011]

Algorithm

⋄ trees to represent input-output
relationships using binary recursive
partitioning
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Active learning using dynaTrees

⋄ Based on a classical nonparametric (do not rely on data belonging to any
particular distribution) modeling technique [M. Taddy et al. 2011]

Algorithm

⋄ trees to represent input-output
relationships using binary recursive
partitioning

⋄ the covariate space is partitioned
into a set of hyper-rectangles

⋄ a simple tree model is fit within
each rectangle

⋄ generate a pool of unlabeled points

⋄ selection: maximize the expected
reduction in predictive variance

sequential!
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Active learning with concurrent evaluations

⋄ batch (nb) of inputs, taken collectively, will lead to updates that are
better than one-at-a-time schemes

The ab-dynaTree algorithm

⋄ select points and evaluate
concurrently
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Active learning with concurrent evaluations

⋄ batch (nb) of inputs, taken collectively, will lead to updates that are
better than one-at-a-time schemes

The ab-dynaTree algorithm

⋄ select points and evaluate
concurrently

⋄ issue: other configurations in the
batch become less informative

⋄ condition sampling on tentative
evaluations

⋄ µ(xprev) ← µpred(xprev);
=⇒ σ

2(xprev) ← 0

⋄ better exploration

⋄ leads to better surrogates with
minimum evaluations
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Experimental setup

⋄ SPAPT test suite [Balaprakash, Norris, & Wild, ICCS ’12]

� elementary linear algebra, linear solver, stencil codes, elementary data
mining

� SPAPT problem = code + set of transformations + parameter
specifications + constraints + input size

� Orio framework [Hartono, Norris, & Sadayappan, IPDPS ’09]

⋄ ab-dynaTree algorithm with a maximum budget of 2, 500 evaluations
(Xout, Yout)

⋄ three non linear regression algorithms: dynaTrees algorithm (dT), random
forest (rf), neural networks (nn)

⋄ active learning (al) variants: (Xout,Yout) as the training set

⋄ random sampling (rs) variants: 2,500 randomly chosen points

⋄ test set T25%: the subset of data points whose mean run times are within
the lower 25% quartile of the empirical distribution for the run times

⋄ root-mean-squared error (RMSE) as a measure of prediction accuracy
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Modeling runtimes of SPAPT kernels

Intel Nehalem: 2.53 GHz processors, 64 KB L1 cache, and 36 GB memory

⋄ Double win: Better RMSE, less evaluations (=time/evaluation)
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Modeling runtimes of SPAPT kernels

⋄ 14/14 SPAPT problems active learning variants performs better than
random search variants
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Modeling runtimes of SPAPT kernels

⋄ dT(rs) with 2,500 evaluations as a baseline

⋄ Savings up to a factor of six
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Comparison between regression algorithms

Table: RMSE averaged over 10 replications on the T25% test set for 2,500 training
points: italics (bold) when a variant is significantly worse (better) than dT(al)
according to a t-test with significance (alpha) level 0.05.

Problem dT(al) dT(rs) nn(al) nn(rs) rf(al) rf(rs)

adi 0.021 0.025 0.034 0.031 0.022 0.025

atax 0.045 0.057 0.064 0.072 0.056 0.069

bicgkernel 0.021 0.024 0.038 0.043 0.032 0.038

correlation 0.060 0.066 0.212 0.199 0.053 0.057

covariance 0.055 0.064 0.104 0.114 0.059 0.072

dgemv3 0.057 0.069 0.100 0.137 0.065 0.077

gemver 0.100 0.120 0.155 0.180 0.103 0.132

hessian 0.045 0.054 0.059 0.070 0.070 0.094

jacobi 0.029 0.045 0.058 0.057 0.044 0.053

lu 0.037 0.060 0.072 0.084 0.050 0.067

mm 0.064 0.079 0.078 0.079 0.061 0.075

mvt 0.032 0.036 0.044 0.053 0.044 0.053

seidel 0.076 0.097 0.092 0.098 0.080 0.095

stencil3d 0.080 0.100 0.100 0.122 0.084 0.105

⋄ dT(al) and nn(al) are similar due to expensive parameter tuning of nn
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Modeling power in HPC kernels

Intel Xeon E5530, 32 KB L1, 256 KB L2 (data from [Tiwari et al., IPDPSW ’12])

⋄ dT(rs) with 2,500 evaluations as a baseline

⋄ savings up to a factor of four
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Impact of batch size (nb) in ab-dynaTree

⋄ nb > 1: explore and identify multiple regions in the input space

⋄ nb = 1: high probability of sampling from only one promising region
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Impact of batch size (nb) in ab-dynaTree for GPU kernels

⋄ on 7 out of 9 GPU problems, large batch size beneficial even when
concurrent evaluations are not feasible

Balaprakash — INRIA-Illinois-ANL — Nov’13 16



Summary

⋄ ab-dynaTree for developing empirical performance models

⋄ active learning as an effective data acquisition strategy

⋄ batch mode of provides significant benefits over the classical, serial mode:
high degree of exploration

use active learning for empirical performance modeling

Future work

⋄ asynchronous model updates

⋄ multiobjective surrogate modeling

⋄ structure exploiting numerical optimization algorithms

⋄ deployment of ab-dynaTree in autotuning search algorithms
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https://github.com/brnorris03/Orio

→ Thank you!
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