Toward a More Robust Sparse Solver ...with some ideas on resilience and scalability

Luke Olson CS @ Illinois

The Point

- The state of algebraic solvers (AMG)
- Thinking about MG and resilience
- Collaboration in the Joint Lab to accelerate this

Sparse Problem

- complex, non-symmetric
- non-elliptic
- preconditioning necessary
- encompass a large solve time

Multilevel

attenuate high energy quickly with with relaxation

attenuate low energy error through coarse-grid correction

I.Determine sense of energy2.Find strength of edges3.Group edges4.Form interpolation

Interpolation

Interpolation

$$e_1 \leftarrow (I - P(P^T A P)^{-1} P^T A) Ge_0$$

coarse grid correction relax

$$Ge_0 \in \mathcal{R}(P) \quad \Rightarrow \quad e_1 = 0$$

interpolation should capture what relaxation misses

- P should have low energy (low A-norm or A^*A -norm)
 - 1. determine sparsity pattern
 - 2. minimize energy column-wise (parallel)

Interpolation (basic)

• Set the sparsity pattern from aggregation

Toward General Interpolation

- Want P so that $u_{low} \in \mathcal{R}(P)$
- Grow sparsity pattern along strong edges:

 $S^k P_{tent}$

• Minimize residual:

 $AP_j = 0$ for each column j

Constraint the minimization with

$$Pu_{low}^c = u_{low}$$

Toward General Interpolation

• Hermitian (and positive definite): use CG

$$AP_j = 0 \Leftrightarrow \min \|P_j\|_A$$
$$R = P^*$$

• Non-Hermitian: use GMRES

$$AP_j = 0 \Leftrightarrow \min \|P_j\|_{A^*A}$$
$$A^*R_j^* = 0 \Leftrightarrow \min \|R_j^*\|_{AA^*}$$

- Range of interpolation/restriction target "right"/"/" left" low-energy
- Cost is comparable to that of standard smoothing

Example: recirculating flow

h	std.	opt.	
1/64	>150	24	
1/128	>150	28	
1/256	>150	33	
1/512	>150	33	

iterations

What interpolation gives us

- Sense of optimality (or a sense of violating optimality) $u \in \mathcal{R}(P) \quad \Rightarrow \quad \|u\|_A \ll 1$
- Energetic stability $\|P(P^T P)^{-1}P^T\|_A$

uniformly bounded gives convergence

- Galerkin coarsening $A_{\text{coarse}} = P^T A_{\text{fine}} P$
- High growth in non-zeros per row:
 - high complexity
 - high data dependence between compute nodes

- Galerkin coarsening $A_{\text{coarse}} = P^T A_{\text{fine}} P$
- High growth in non-zeros per row:
 - high complexity
 - high data dependence between compute nodes

- Basic idea* is to take $A_{lgebraic}$ * Falgout, Sch Algebraic Mult $A_{
m c}=P^TA_{
m f}P$

* Falgout, Schroder. Non-Galerkin Coarse Grids for Algebraic Multigrid. LLNL 2013.

$$\|I - \hat{A}_c^{-1} A_c\| \to \min$$

- \hat{A}_c has improved sparsity
- I. Determine a sparsity pattern

2. Enforce collapsing to maintain spectral equivalence

potential: lower corruption, few (potential) faults in MPI

Why think about MG resilience

- Large amount of time spent in solving Ax = b
 - I. opportunity for silent detection
 - 2. opportunity for less aggressive recovery
 - 3. refocus on convergence
- A good solver will attenuate some errors, recognize others
- Natural hierarchy → micro-checkpointing

Trying a fault

- Jon Calhoun's fault injection framework
 - LLVM IR bitcode
 - fault model to inject in arithmetic, pointers, control, etc

Trying a fault

- Example: residual corruption in bit m
- 2D Poisson
- results in an arithmetic error
- other corruptions possible
 - pointer errors most common, but easily manifest as a SEG

Trying a fault

bit injected into residual in the second iteration

What happens

- Error propagates with the mat-vec Ax
- Coarse levels intensify fault (relative to amount of data)
 - less likely and cheaper to detect
- if a fault is detected and it is severe then recover, adjust
- Need accurate measure of **silent** errors
 - handle persistent errors
 - recover from transient ones

measures

- energy metric (expensive, accurate): $\eta = \langle Ax, x \rangle - 2 \langle b, x \rangle$
- residual metric (cheap,, bound): $\langle r,r \rangle$

measures

Metric	Probability of encounter		level	overhead
Convergence	94%	-	0	18%
segfault	24%	-	I	6%
energy check	21%			
residual check	3%		2	< %
loop assertion	6%		3	11%

- I 00 tests
- aniso diff. $40k \times 40k$
- injection rate ~ I-2 per solve

measures

- How do we effectively measure stability locally?
- Do the measures capture the right silent errors (efficiently)?

Some directions

- Fault model to match data
 - potential collaboration: Cappello (ANL/INRIA)

- Redundancy and recovery
 - potential collaboration: Brown et al (ANL)
- Algorithm recovery with micro checkpointing
 - potential collaboration: Cappello (ANL/INRIA)
- Extend interpolation and non-Galerkin methodology to DD-type
 - <u>potential collaboration</u>: Brown (ANL), Nataf (LJLL), Grigori (INRIA)

- this is work with
 - Jon Calhoun (fault injection, analysis)
 - Amanda Bienz (non-Galerkin scaling)
 - Andrew Reisner (redundancy models)
 - others @ Illinois, LLNL, ANL