Joward a More Robust Sparse Solver

...with some Ideas on resilience and scalability
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| he Point

» [he state of algebraic solvers (AMG)
» Thinking about MG and resilience

» Collaboration in the Joint Lab to accelerate this



Sparse Problem

* complex, non-symmetric

» non-elliptic

* preconditioning necessary

* encompass a large solve
time



Multilevel

attenuate high energy quickly with with relaxation

attenuate low energy error through coarse-grid correction F/\/\
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Multilevel

|.Determine sense of energy
2.Find strength of edges
3.Group edges

4.Form interpolation




Interpolation
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Interpolation
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interpolation should capture what relaxation misses

P should have low energy  (low A-norm or A* A-norm)
1. determine sparsity pattern
2. minimize energy column-wise (parallel)



Interpolation (basic)

Set the sparsity pattern from aggregation

ercduce energy
®mprove accuracy
®increase complexity




sparsity pattern
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Joward General Interpolation

Nt P so that w € R(P)

» Grow sparsity pattern along strong edges:

Sthent

e islmIze residual:

AP; =0 for each column j

e Constraint the minimization with

C
Pulow — Ulow



Joward General Interpolation

* Hermitian (and positive definite): use CG

AP; =0 < min | P;||a
i

« Non-Hermitian: use GMRES

APj e HllIlHP]| A* A
A*R;f — () < min HR; | AA

» Range of interpolation/restriction target “right”/"left” low-energy

» Cost I1s comparable to that of standard smoothing



Example: recirculating flow
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VWhat interpolation gives us

* Sense of optima\ity (or a sense of violating optimality)

weR(P) = |lulla<1

* Energetic stablility
(P P) P s

uniformly bounded gives convergence



Non-Galerkin Coarsening
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Non-Galerkin Coarsening

+ Galerkin coarsening 512 nodket (12 cores)
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Non-Galerkin Coarsening

) B l l d '>l<' l ‘ * Falgout, Schroder. Non-Galerkin Coarse Grids for
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* A. has improved sparsity

|. Determine a sparsity pattern

2. Enforce collapsing to maintain spectral equivalence



Non-Galerkin Coarsening
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» potential: lower corruption, few (potential) faults in MPI



Why think about MG resilience

L arge amount of time spent in solving Az = b

|, opportunity for silent detection

2. opportunity for less aggressive recovery
Bl IecLis or convergence

A good solver will attenuate some errors, recognize others
@EZed components = more detection

Natural hierarchy = micro-checkpointing



Irying a fault
nse | e | [t |

» Jon Calhoun’s fault injection framework
e R pitcode
shjalitimodel to Inject In arthmetic, polnters, CONtrEINEES




Irying a fault

=l — Al

Example:  residual corruption

N bit m

2D Poisson

results In an arrthmetic error
other corruptions possible

* DOINLEr errOrsiiies:
common, but easily manifest

as a SEG



a fault

rying

* bit Injected into residual In the second rteration
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VWhat happens

Error propagates with the mat-vec Ax

Coarse levels intensify fault (relative to amount of data)

Blelikely and cheaper 1o detect

f a fault Is detected and it is severe
then recover, adjust

Need accurate measure of silent errors
g nicle persistent errors
* recover from transient ones



* residual metric

MEeAsures

* energy metric
(expensive, accurate): Nlpre  Tlpost

n=(Ax,x) — 2(b, x)

expense

(cheap,, bouna):
(7, 7)



MEAsuUres

Convergence 94% 0 18%
segfault 24%
676
energy check 21 %
i i
residual check 3%
loop assertion 6% 3 | 1%
00 tests

« aniso diff. 40k x 40k

* Injection rate ~ |-2 per solve



MeEeasures

» How do we effectively measure stability locally?

» Do the measures capture the right silent errors
(efficiently)?



Some directions

* Fault model to match data
- potential collaboration: Cappello (ANL/INRIA)

* Redundancy and recovery

- potential collaboration: Brown et al (ANL)

from Brune et al.

j

* Algorithm recovery with micro checkpointing
- potential collaboration: Cappello (ANL/INRIA)

» Extend interpolation and non-Galerkin
methodology to DD-type
- potential collaboration: Brown (ANL), Nataf
(LJLL), Grigori (INRIA)




* this 1s work with
» Jon Calhoun (fault injection, analysis)
* Amanda Bienz (non-Galerkin scaling)

» Andrew Reisner (redundancy models)

« others @ lllinois, LLNL, ANL



