
Toward a More Robust Sparse Solver
…with some ideas on resilience and scalability

Luke Olson	

CS @ Illinois

• The state of algebraic solvers (AMG)	

• Thinking about MG and resilience	

• Collaboration in the Joint Lab to accelerate this

The Point

Sparse Problem

• complex, non-symmetric	

• non-elliptic	

• preconditioning necessary	

• encompass a large solve
time

[][][]A
x

b=

Multilevel

attenuate high energy quickly with with relaxation	

attenuate low energy error through coarse-grid correction

x0 x0 + !D

�1
r0

rc = PT r0 ē0 = Pec

x0 x0 + ē0relax

restrict

coarse solve

interpolate

correct

(PTAP)ec = rc Pneed

1.Determine sense of energy	

2.Find strength of edges	

3.Group edges	

4.Form interpolation

Multilevel

coarse

coarser

coarsest

Interpolation
fine

e1 (I � P (PTAP)�1PTA)Ge0
relax

residual
restrict

coarse solve
interpolate

correct

Interpolation

• should have low energy (low -norm or -norm)

1. determine sparsity pattern

2. minimize energy column-wise (parallel)

P A A⇤A

e1 (I � P (PTAP)�1PTA)Ge0
relaxcoarse grid correction

Ge0 2 R(P)) e1 = 0

interpolation should capture what relaxation misses

• Set the sparsity pattern from aggregation
Interpolation (basic) 1

P =

2

66664

1 0
1 0
0 1
0 1
0 1

3

77775

•reduce energy
•improve accuracy
•increase complexity

P (I � !D�1A)P

Range of Interpolation

250 255 260 265
0

1

In
te

rp
ol

at
io

n
W

ei
gh

t

Ideal
Classic

250 255 260 265
0

1

In
te

rp
ol

at
io

n
W

ei
gh

t

Ideal
Classic

250 255 260 265
0

1

In
te

rp
ol

at
io

n
W

ei
gh

t

Ideal
Energy−Min

�u

xx

+ sin(x)u
x

= f

1

sparsity pattern

• Want so that	

• Grow sparsity pattern along strong edges:  

• Minimize residual: 

• Constraint the minimization with  

Toward General Interpolation
P u

low

2 R(P)

SkPtent

APj = 0 for each column j

Puc

low

= u
low

• Hermitian (and positive definite): use CG  
 
 

• Non-Hermitian: use GMRES  
 
 
 

• Range of interpolation/restriction target “right”/“left” low-energy	

• Cost is comparable to that of standard smoothing 

Toward General Interpolation

R = P ⇤
APj = 0 , min kPjkA

APj = 0 , min kPjkA⇤A

A⇤R⇤
j = 0 , min kR⇤

jkAA⇤

1

Example: recirculating flow

std. opt.

1/64 >150 24

1/128 >150 28

1/256 >150 33

1/512 >150 33

h

iterations

• Sense of optimality (or a sense of violating optimality) 

• Energetic stability 

What interpolation gives us

kP (PTP)�1PT kA

u 2 R(P)) kukA ⌧ 1

uniformly bounded gives convergence

• Galerkin coarsening 

• High growth in  
non-zeros per row:	

• high complexity	

• high data dependence

between compute nodes

Non-Galerkin Coarsening

A
coarse

= PTA
fine

P

average non-zeros per row

non-Galerkin

Galerkin

10K d.o.f. per node	

512 nodes (12 cores)

nn
z/

ro
w

• Galerkin coarsening 

• High growth in  
non-zeros per row:	

• high complexity	

• high data dependence

between compute nodes

Non-Galerkin Coarsening

A
coarse

= PTA
fine

P

time per level

non-Galerkin

Galerkin

10K d.o.f. per node	

512 nodes (12 cores)

tim
e

(s
)

• Basic idea* is to take	

!

• has improved sparsity	

1. Determine a sparsity pattern	

2. Enforce collapsing to maintain spectral equivalence

Non-Galerkin Coarsening
* Falgout, Schroder. Non-Galerkin Coarse Grids for
Algebraic Multigrid. LLNL 2013.

Ac = PTAfP

kI � Â�1
c Ack ! min

Âc

• potential: lower corruption, few (potential) faults in MPI

Non-Galerkin Coarsening

• Large amount of time spent in solving	

1. opportunity for silent detection	

2. opportunity for less aggressive recovery	

3. refocus on convergence  

• A good solver will attenuate some errors, recognize others	

• Optimized components → more detection	

• Natural hierarchy → micro-checkpointing

Why think about MG resilience
Ax = b

• Jon Calhoun’s fault injection framework	

• LLVM IR bitcode	

• fault model to inject in arithmetic, pointers, control, etc

Trying a fault

code bitcode 0 1 0 0 11 0 1inject

• Example: residual corruption
in bit m	

• 2D Poisson	

• results in an arithmetic error	

• other corruptions possible	

• pointer errors most
common, but easily manifest
as a SEG

Trying a fault

r = b�Ax

r

Trying a fault

4th levelFinest level

• bit injected into residual in the second iteration

• Error propagates with the mat-vec	

• Coarse levels intensify fault (relative to amount of data)	

• less likely and cheaper to detect	

• if a fault is detected and it is severe  
then recover, adjust 

• Need accurate measure of silent errors	

• handle persistent errors	

• recover from transient ones

What happens
Ax

• energy metric
(expensive, accurate): 

• residual metric
(cheap,, bound):

measures

⌘ = hAx, xi � 2hb, xi

⌘pre ⌘
post

hr, ri

ex
pe

ns
e

measures
level overhead

0 18%

1 6%

2 <1%

3 11%

Metric Probability of
encounter

Convergence 94%

segfault 24%

energy check 21%

residual check 3%

loop assertion 6%

• 100 tests	

• aniso diff. 40k x 40k	

• injection rate ~ 1-2 per solve

• How do we effectively measure stability locally?	

• Do the measures capture the right silent errors
(efficiently)?

measures

• Fault model to match data	

• potential collaboration: Cappello (ANL/INRIA)	

• Redundancy and recovery	

• potential collaboration: Brown et al (ANL)	

• Algorithm recovery with micro checkpointing	

• potential collaboration: Cappello (ANL/INRIA)	

• Extend interpolation and non-Galerkin
methodology to DD-type	

• potential collaboration: Brown (ANL), Nataf
(LJLL), Grigori (INRIA)

Some directions

from Brune et al.

• this is work with 	

• Jon Calhoun (fault injection, analysis)	

• Amanda Bienz (non-Galerkin scaling)	

• Andrew Reisner (redundancy models)	

• others @ Illinois, LLNL, ANL

