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• The state of algebraic solvers (AMG)	


• Thinking about MG and resilience	


• Collaboration in the Joint Lab to accelerate this

The Point



Sparse Problem

• complex, non-symmetric	


• non-elliptic	


• preconditioning necessary	


• encompass a large solve 
time
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Multilevel

attenuate high energy quickly with with relaxation	


attenuate low energy error through coarse-grid correction
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1.Determine sense of energy	

2.Find strength of edges	

3.Group edges	

4.Form interpolation

Multilevel
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Interpolation

•        should have low energy     (low     -norm or           -norm)

1.  determine sparsity pattern

2.  minimize energy column-wise (parallel)
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interpolation should capture what relaxation misses



• Set the sparsity pattern from aggregation
Interpolation (basic) 1
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•reduce energy 
•improve accuracy 
•increase complexity
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Range of Interpolation
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• Want      so that	


• Grow sparsity pattern along strong edges:  

• Minimize residual: 

• Constraint the minimization with  

Toward General Interpolation
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• Hermitian (and positive definite): use CG  
 
 

• Non-Hermitian: use GMRES  
 
 
 

• Range of interpolation/restriction target “right”/“left” low-energy	


• Cost is comparable to that of standard smoothing 

Toward General Interpolation
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APj = 0 , min kPjkA
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Example: recirculating flow

std. opt.

1/64 >150 24

1/128 >150 28

1/256 >150 33

1/512 >150 33

h

iterations



• Sense of optimality (or a sense of violating optimality) 

• Energetic stability 

What interpolation gives us
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uniformly bounded gives convergence



• Galerkin coarsening 

• High growth in  
non-zeros per row:	

• high complexity	

• high data dependence 

between compute nodes

Non-Galerkin Coarsening
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• Galerkin coarsening 

• High growth in  
non-zeros per row:	

• high complexity	

• high data dependence 

between compute nodes

Non-Galerkin Coarsening
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time per level

non-Galerkin

Galerkin

10K d.o.f. per node	

512 nodes (12 cores)
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• Basic idea* is to take	


!

•      has improved sparsity	


1. Determine a sparsity pattern	


2. Enforce collapsing to maintain spectral equivalence

Non-Galerkin Coarsening
* Falgout, Schroder. Non-Galerkin Coarse Grids for 
Algebraic Multigrid. LLNL 2013.
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• potential: lower corruption, few (potential) faults in MPI

Non-Galerkin Coarsening



• Large amount of time spent in solving	

1. opportunity for silent detection	

2. opportunity for less aggressive recovery	

3. refocus on convergence  

• A good solver will attenuate some errors, recognize others	

• Optimized components → more detection	

• Natural hierarchy → micro-checkpointing

Why think about MG resilience
Ax = b



• Jon Calhoun’s fault injection framework	

• LLVM IR bitcode	

• fault model to inject in arithmetic, pointers, control, etc

Trying a fault

code bitcode 0 1 0 0 11 0 1inject



• Example:   residual corruption 
in bit m	


• 2D Poisson	


• results in an arithmetic error	


• other corruptions possible	


• pointer errors most 
common, but easily manifest 
as a SEG

Trying a fault

r = b�Ax

r



Trying a fault

4th levelFinest level

• bit injected into residual in the second iteration



• Error propagates with the mat-vec	


• Coarse levels intensify fault (relative to amount of data)	

• less likely and cheaper to detect	


• if a fault is detected and it is severe  
then recover, adjust 

• Need accurate measure of silent errors	

• handle persistent errors	

• recover from transient ones

What happens
Ax



• energy metric 
(expensive, accurate): 

• residual metric 
(cheap,, bound):

measures
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measures
level overhead

0 18%

1 6%

2 <1%

3 11%

Metric Probability of 
encounter

Convergence 94%

segfault 24%

energy check 21%

residual check 3%

loop assertion 6%

• 100 tests	

• aniso diff.   40k x 40k	

• injection rate ~ 1-2 per solve



• How do we effectively measure stability locally?	


• Do the measures capture the right silent errors 
(efficiently)?

measures



• Fault model to match data	

• potential collaboration: Cappello (ANL/INRIA)	


• Redundancy and recovery	

• potential collaboration: Brown et al (ANL)	


• Algorithm recovery with micro checkpointing	

• potential collaboration: Cappello (ANL/INRIA)	


• Extend interpolation and non-Galerkin 
methodology to DD-type	


• potential collaboration: Brown (ANL), Nataf 
(LJLL), Grigori (INRIA)

Some directions

from Brune et al.



• this is work with 	


• Jon Calhoun (fault injection, analysis)	


• Amanda Bienz (non-Galerkin scaling)	


• Andrew Reisner (redundancy models)	


• others @ Illinois, LLNL, ANL


