
Fast solvers for implicit Runge-Kutta
systems

Jed Brown jedbrown@mcs.anl.gov
Debojyoti Ghosh ghosh@mcs.anl.gov

Mathematics and Computer Science Division
Argonne National Laboratory

JointLab, UIUC, 2013-11-26



Outline

The memory bandwidth problem

Implicit Runge-Kutta

Tensor product algebra



Hardware Arithmetic Intensity

Operation Arithmetic Intensity (flops/B)

Sparse matrix-vector product 1/6
Dense matrix-vector product 1/4
Unassembled matrix-vector product ≈ 8
High-order residual evaluation > 5

Processor Bandwidth (GB/s) Peak (GF/s) Balanced AI (F/B)

E5-2680 8-core 38 173 4.5
Magny Cours 16-core 49 281 5.7
Blue Gene/Q node 43 205 4.8
Tesla M2090 120 665 5.5
Kepler K20Xm 160 1310 8.2
Xeon Phi SE10P 161 1060 6.6



Optimizing Sparse Mat-Vec

Order unknowns so vector reuses cache (Cuthill-McKee)
Optimal: (2 flops)(bandwidth)

sizeof(Scalar)+sizeof(Int)
Usually improves strength of ILU and SOR

Coalesce indices for adjacent rows (Inodes)
Optimal: (2 flops)(bandwidth)

sizeof(Scalar)+sizeof(Int)/i
Can do block SOR (much stronger than scalar SOR)
Default in PETSc, turn off with -mat_no_inode
Requires ordering unknowns so that fields are interlaced, this is
(much) better for memory use anyway

Use explicit blocking, hold one index per block (BAIJ format)

Optimal: (2 flops)(bandwidth)
sizeof(Scalar)+sizeof(Int)/b2

Block SOR and factorization
Symbolic factorization works with blocks (much cheaper)
Very regular memory access, unrolled dense kernels
Faster insertion: MatSetValuesBlocked()



This is a dead end

Arithmetic intensity < 1/4

Idea: multiple right hand sides

(2k flops)(bandwidth)

sizeof(Scalar)+sizeof(Int)
, k � avg. nz/row

Problem: popular algorithms have nested data dependencies
Time step

Nonlinear solve
Krylov solve

Preconditioner/sparse matrix

Cannot parallelize/vectorize these nested loops



Attempt: s-step methods in 3D
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Amortizing message latency is most important for strong-scaling
s-step methods have high overhead for small subdomains
Limited choice of preconditioners (none optimal)



Attempt: space-time methods (multilevel
SDC/Parareal)

PFASST algorithm (Emmett and Minion, 2013)
Zero-latency messages (cf. performance model of s-step)
Spectral Deferred Correction: iterative, converges to IRK (Gauss,
Radau, . . . )
Stiff problems use implicit basic integrator (synchronizing on spatial
communicator)



Problems with SDC and time-parallel
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c/o Matthew Emmett, parallel compared to sequential SDC
Number of iterations is not uniform, efficiency starts low
Arithmetic intensity unchanged
Parabolic space-time (Greenwald and Brandt/Horton and
Vandewalle)
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Runge-Kutta methods

u̇ = F(u)y1
...

ys


︸ ︷︷ ︸

Y

= un + h

a11 · · · a1s
...

. . .
...

as1 · · · ass


︸ ︷︷ ︸

A

F

y1
...

ys


un+1 = bT Y

General framework for one-step methods

Diagonally implicit: A lower triangular, stage order ≤ 2

Singly diagonally implicit: all Aii equal, reuse solver setup, stage
order ≤ 1

If A is a general full matrix, all stages are coupled, “implicit RK”



Implicit Runge-Kutta
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Implicit Runge-Kutta methods have excellent accuracy and stability
properties
Gauss methods with s stages

order 2s, (s,s) Padé approximation to the exponential
A-stable, symplectic

Radau (IIA) methods with s stages
order 2s−1, A-stable, L-stable

Lobatto (IIIC) methods with s stages
order 2s−2, A-stable, L-stable, self-adjoint

Stage order s or s + 1



Method of Butcher (1976) and Bickart (1977)

Newton linearize Runge-Kutta system

Y = un + hAF(Y )

Solve linear system with tensor product operator

S⊗ In + Is⊗ J

where S = (hA)−1 is s× s dense, J =−∂F(u)/∂u sparse

SDC (2000) is Gauss-Seidel with low-order corrector
Butcher/Bickart method: diagonalize S = XΛX−1

Λ⊗ In + Is⊗ J

s decoupled solves

Problem: X is exponentially ill-conditioned wrt. s
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MatTAIJ: “sparse” tensor product matrices

G = In⊗S + J⊗T

More general than multiple RHS (multivectors)

Compare to multiple right hand sides in row-major

Runge-Kutta systems have T = Is (permuted from Butcher method)

Stream J through cache once, same efficiency as multiple RHS



128 nodes, 16 procs/node, small diffusion problem

Method order nsteps time

Gauss 4 8 10 3.4345e-01
Gauss 2 4 20 7.6320e-01
Gauss 1 2 40 1.1052e+00



Calibration and accuracy

Splitting errors plague multi-physics simulation
Verlet (leapfrog) integration is popular: symplectic and cheap

Stability problems: damping and even/odd decoupling

Models calibrated to compensate
Force parametrizations in molecular dynamics
Atmospheric column physics



c/o Peter Caldwell (LLNL)
Models calibrated for “efficient” time step
Not longer solving the PDEs we write down
Many FTE-years to recalibrate when discretization changes
Calibration eats up a big chunk of the IPCC policy timeline



Implicit Runge-Kutta for advection

Table : Total number of iterations (communications or accesses of J) to solve
linear advection to t = 1 on a 1024-point grid using point-block Jacobi
preconditioning of implicit Runge-Kutta matrix. The relative algebraic solver
tolerance is 10−8.

Family Stages Order Iterations

Crank-Nicolson/Gauss 1 2 3627
Gauss 2 4 2560
Gauss 4 8 1735
Gauss 8 16 1442

Naive centered-difference discretization



Trade-offs in time integration

Properties
Nonlinear stability (e.g., positivity preservation)
Stability along imaginary axis
L-stability (damping at infinity)
Implicitness and reuse

What is expensive?
Function evaluation
Operator assembly/preconditioner setup

How much can be reused for how long?

Implicit solves
Can we find better solver algorithm?
More effort in setup?

What is “convergence”?
Wave propagation: implicitness useless for convergence in a norm
Non-norm functionals could be robust



Outlook

Next up: Algebraic multigrid for tensor product operators

Technicalities: imaginary rotation in coarse operators (cf. MG for
Helmholtz)

Stochastic Galerkin have some structure

Is it possible to design methods with well-conditioned S = XΛX−1
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