Fast solvers for implicit Runge-Kutta systems

Jed Brown jedbrown@mcs.anl.gov
Debojyoti Ghosh ghosh@mcs.anl.gov

Mathematics and Computer Science Division
Argonne National Laboratory

JointLab, UIUC, 2013-11-26

Outline

The memory bandwidth problem

Implicit Runge-Kutta

Tensor product algebra

Hardware Arithmetic Intensity

Operation	Arithmetic Intensity (flops/B)
Sparse matrix-vector product	$1 / 6$
Dense matrix-vector product	$1 / 4$
Unassembled matrix-vector product	≈ 8
High-order residual evaluation	>5

Processor	Bandwidth (GB/s)	Peak (GF/s)	Balanced AI (F/B
E5-2680 8-core	38	173	4.
Magny Cours 16-core	49	281	5.
Blue Gene/Q node	43	205	4.
Tesla M2090	120	665	5.
Kepler K20Xm	160	1310	8.
Xeon Phi SE10P	161	1060	6.

Optimizing Sparse Mat-Vec

■ Order unknowns so vector reuses cache (Cuthill-McKee)

- Optimal: $\frac{(2 \text { flops)(bandwidth) }}{\text { sizeof(Scalar)+sizeof(Int) }}$

■ Usually improves strength of ILU and SOR
■ Coalesce indices for adjacent rows (Inodes)

- Optimal: $\frac{(2 \text { flops)(bandwidth) }}{\text { sizeof (Scalar)+sizeof(Int)/i }}$
- Can do block SOR (much stronger than scalar SOR)

■ Default in PETSc, turn off with -mat_no_inode
■ Requires ordering unknowns so that fields are interlaced, this is (much) better for memory use anyway
■ Use explicit blocking, hold one index per block (BAIJ format)
■ Optimal: $\frac{(2 \text { flops)(bandwidth) }}{\text { sizeof(Scalar) }+ \text { sizeof (Int) } / b^{2}}$

- Block SOR and factorization

■ Symbolic factorization works with blocks (much cheaper)

- Very regular memory access, unrolled dense kernels

■ Faster insertion: MatSetValuesBlocked()

This is a dead end

- Arithmetic intensity $<1 / 4$

■ Idea: multiple right hand sides

$$
\frac{(2 k \text { flops)(bandwidth) }}{\text { sizeof (Scalar) }+ \text { sizeof (Int) }}, \quad k \ll \text { avg. nz/row }
$$

■ Problem: popular algorithms have nested data dependencies
■ Time step
Nonlinear solve
Krylov solve
Preconditioner/sparse matrix
■ Cannot parallelize/vectorize these nested loops

Attempt: s-step methods in 3D

■ Amortizing message latency is most important for strong-scaling

- s-step methods have high overhead for small subdomains
- Limited choice of preconditioners (none optimal)

Attempt: space-time methods (multilevel SDC/Parareal)

■ PFASST algorithm (Emmett and Minion, 2013)
■ Zero-latency messages (cf. performance model of s-step)
■ Spectral Deferred Correction: iterative, converges to IRK (Gauss, Radau, ...)

- Stiff problems use imolicit basic intearator (svnchronizing on spatial

Problems with SDC and time-parallel

c/o Matthew Emmett, parallel compared to sequential SDC
■ Number of iterations is not uniform, efficiency starts low

- Arithmetic intensity unchanged

■ Parabolic space-time (Greenwald and Brandt/Horton and Vandewalle)

Outline

The memory bandwidth problem

Implicit Runge-Kutta

Tensor product algebra

Runge-Kutta methods

$$
\begin{gathered}
\dot{u}=F(u) \\
\underbrace{\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{s}
\end{array}\right)}_{Y}=u^{n}+h \underbrace{\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 s} \\
\vdots & \ddots & \vdots \\
a_{s 1} & \cdots & a_{s s}
\end{array}\right]}_{A} F\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{s}
\end{array}\right) \\
u^{n+1}=b^{T} Y
\end{gathered}
$$

- General framework for one-step methods

■ Diagonally implicit: A lower triangular, stage order ≤ 2
■ Singly diagonally implicit: all $A_{i j}$ equal, reuse solver setup, stage order ≤ 1

- If A is a general full matrix, all stages are coupled, "implicit RK"

Implicit Runge-Kutta

$\frac{1}{2}-\frac{\sqrt{15}}{10}$	$\frac{5}{36}$	$\frac{2}{9}-\frac{\sqrt{15}}{15}$	$\frac{5}{36}-\frac{\sqrt{15}}{30}$
$\frac{1}{2}$	$\frac{5}{36}+\frac{\sqrt{15}}{24}$	$\frac{2}{9}$	$\frac{5}{36}-\frac{\sqrt{15}}{24}$
$\frac{1}{2}-\frac{\sqrt{15}}{10}$	$\frac{5}{36}+\frac{\sqrt{15}}{30}$	$\frac{2}{9}+\frac{\sqrt{15}}{15}$	$\frac{5}{36}$
	$\frac{5}{18}$	$\frac{4}{9}$	$\frac{5}{18}$

■ Implicit Runge-Kutta methods have excellent accuracy and stability properties

- Gauss methods with s stages
- order $2 s,(s, s)$ Padé approximation to the exponential
- A-stable, symplectic

■ Radau (IIA) methods with s stages
■ order $2 s-1, A$-stable, L-stable

- Lobatto (IIIC) methods with s stages

■ order $2 s-2, A$-stable, L-stable, self-adjoint

- Stage order s or $s+1$

Method of Butcher (1976) and Bickart (1977)

■ Newton linearize Runge-Kutta system

$$
Y=u^{n}+h A F(Y)
$$

■ Solve linear system with tensor product operator

$$
S \otimes I_{n}+I_{s} \otimes J
$$

where $S=(h A)^{-1}$ is $s \times s$ dense, $J=-\partial F(u) / \partial u$ sparse
■ SDC (2000) is Gauss-Seidel with low-order corrector
■ Butcher/Bickart method: diagonalize $S=X \wedge X^{-1}$
■ $\Lambda \otimes I_{n}+I_{s} \otimes J$
■ s decoupled solves
■ Problem: X is exponentially ill-conditioned wrt. s

Outline

The memory bandwidth problem

Implicit Runge-Kutta

Tensor product algebra

MatTAIJ: "sparse" tensor product matrices

$$
G=I_{n} \otimes S+J \otimes T
$$

- More general than multiple RHS (multivectors)
- Compare to multiple right hand sides in row-major
- Runge-Kutta systems have $T=I_{s}$ (permuted from Butcher method)

■ Stream J through cache once, same efficiency as multiple RHS

128 nodes, 16 procs/node, small diffusion problem Method order nsteps time

Gauss 4	8	10	$3.4345 \mathrm{e}-01$
Gauss 2	4	20	$7.6320 \mathrm{e}-01$
Gauss 1	2	40	$1.1052 \mathrm{e}+00$

Calibration and accuracy

■ Splitting errors plague multi-physics simulation
■ Verlet (leapfrog) integration is popular: symplectic and cheap
■ Stability problems: damping and even/odd decoupling
■ Models calibrated to compensate

- Force parametrizations in molecular dynamics
- Atmospheric column physics

Impact of time step on autoconversion vs accretion partitioning (from Hui)

Global Mean Normalized w.r.t. Default Model Configuration

c/o Peter Caldwell (LLNL)
■ Models calibrated for "efficient" time step
■ Not longer solving the PDEs we write down
■ Many FTE-years to recalibrate when discretization changes

- Calibration eats up a big chunk of the IPCC policy timeline

Implicit Runge-Kutta for advection

Table : Total number of iterations (communications or accesses of J) to solve linear advection to $t=1$ on a 1024-point grid using point-block Jacobi preconditioning of implicit Runge-Kutta matrix. The relative algebraic solver tolerance is 10^{-8}.

Family	Stages	Order	Iterations
Crank-Nicolson/Gauss	1	2	3627
Gauss	2	4	2560
Gauss	4	8	1735
Gauss	8	16	1442

■ Naive centered-difference discretization

Trade-offs in time integration

- Properties

■ Nonlinear stability (e.g., positivity preservation)
■ Stability along imaginary axis

- L-stability (damping at infinity)
- Implicitness and reuse

■ What is expensive?

- Function evaluation

■ Operator assembly/preconditioner setup
■ How much can be reused for how long?
■ Implicit solves
■ Can we find better solver algorithm?
■ More effort in setup?
■ What is "convergence"?

- Wave propagation: implicitness useless for convergence in a norm

■ Non-norm functionals could be robust

Outlook

■ Next up: Algebraic multigrid for tensor product operators
■ Technicalities: imaginary rotation in coarse operators (cf. MG for Helmholtz)
■ Stochastic Galerkin have some structure
■ Is it possible to design methods with well-conditioned $S=X \wedge X^{-1}$

