Fast solvers for implicit Runge-Kutta systems

Jed Brown jedbrown@mcs.anl.gov Debojyoti Ghosh ghosh@mcs.anl.gov

Mathematics and Computer Science Division Argonne National Laboratory

JointLab, UIUC, 2013-11-26

Outline

The memory bandwidth problem

Implicit Runge-Kutta

Tensor product algebra

Hardware Arithmetic Intensity

Operation	Arithmetic Intensity (flops/B)		
Sparse matrix-vector product	1/6		
Dense matrix-vector product	1/4		
Unassembled matrix-vector product	pprox 8		
High-order residual evaluation	> 5		

Processor	Bandwidth (GB/s)	Peak (GF/s)	Balanced AI (F/B
E5-2680 8-core	38	173	4.
Magny Cours 16-core	49	281	5.
Blue Gene/Q node	43	205	4.
Tesla M2090	120	665	5.
Kepler K20Xm	160	1310	8.
Xeon Phi SE10P	161	1060	6.

Optimizing Sparse Mat-Vec

- Order unknowns so vector reuses cache (Cuthill-McKee)
 - Optimal: (2 flops)(bandwidth) sizeof(Scalar)+sizeof(Int)
 - Usually improves strength of ILU and SOR
- Coalesce indices for adjacent rows (Inodes)
 - Optimal: $\frac{(2 \text{ flops})(\text{bandwidth})}{\text{sizeof}(\text{Scalar}) + \text{sizeof}(\text{Int})/i}$
 - Can do block SOR (much stronger than scalar SOR)
 - Default in PETSc, turn off with -mat_no_inode
 - Requires ordering unknowns so that fields are interlaced, this is (much) better for memory use anyway
- Use explicit blocking, hold one index per block (BAIJ format)
 - Optimal: (2 flops)(bandwidth)
 sizeof(Scalar)+sizeof(Int)/b²
 - Block SOR and factorization
 - Symbolic factorization works with blocks (much cheaper)
 - Very regular memory access, unrolled dense kernels
 - Faster insertion: MatSetValuesBlocked()

This is a dead end

- Arithmetic intensity < 1/4</p>
- Idea: multiple right hand sides

$$\frac{(2k \; \mathsf{flops}) \big(\mathsf{bandwidth} \big)}{\mathsf{sizeof} \, (\mathsf{Scalar}) + \mathsf{sizeof} \, (\mathsf{Int})}, \quad k \ll \mathsf{avg.} \; \mathsf{nz/row}$$

- Problem: popular algorithms have nested data dependencies
 - Time step

Nonlinear solve

Krylov solve

Preconditioner/sparse matrix

■ Cannot parallelize/vectorize these nested loops

Attempt: s-step methods in 3D

- Amortizing message latency is most important for strong-scaling
- s-step methods have high overhead for small subdomains
 - Limited choice of preconditioners (none optimal)

Attempt: space-time methods (multilevel

- PFASST algorithm (Emmett and Minion, 2013)
- Zero-latency messages (cf. performance model of *s*-step)
- Spectral Deferred Correction: iterative, converges to IRK (Gauss, Radau, . . .)
- Stiff problems use implicit basic integrator (synchronizing on spatial

c/o Matthew Emmett, parallel compared to sequential SDC

- Number of iterations is not uniform, efficiency starts low
- Arithmetic intensity unchanged
- Parabolic space-time (Greenwald and Brandt/Horton and Vandewalle)

Outline

The memory bandwidth problem

Implicit Runge-Kutta

Tensor product algebra

Runge-Kutta methods

$$\underbrace{\begin{pmatrix} y_1 \\ \vdots \\ y_s \end{pmatrix}}_{Y} = u^n + h \underbrace{\begin{bmatrix} a_{11} & \cdots & a_{1s} \\ \vdots & \ddots & \vdots \\ a_{s1} & \cdots & a_{ss} \end{bmatrix}}_{A} F \begin{pmatrix} y_1 \\ \vdots \\ y_s \end{pmatrix}$$

$$u^{n+1} = b^T Y$$

- General framework for one-step methods
- Diagonally implicit: A lower triangular, stage order ≤ 2
- Singly diagonally implicit: all A_{ii} equal, reuse solver setup, stage order ≤ 1
- If A is a general full matrix, all stages are coupled, "implicit RK"

Implicit Runge-Kutta

- Implicit Runge-Kutta methods have excellent accuracy and stability properties
- Gauss methods with s stages
 - \blacksquare order 2s, (s, s) Padé approximation to the exponential
 - A-stable, symplectic
- Radau (IIA) methods with s stages
 - \blacksquare order 2s 1, A-stable, L-stable
- Lobatto (IIIC) methods with *s* stages
 - \blacksquare order 2s 2, A-stable, L-stable, self-adjoint
- Stage order s or s+1

Method of Butcher (1976) and Bickart (1977)

■ Newton linearize Runge-Kutta system

$$Y = u^n + hAF(Y)$$

Solve linear system with tensor product operator

$$S \otimes I_n + I_s \otimes J$$

where
$$S = (hA)^{-1}$$
 is $s \times s$ dense, $J = -\partial F(u)/\partial u$ sparse

- SDC (2000) is Gauss-Seidel with low-order corrector
- Butcher/Bickart method: diagonalize $S = X\Lambda X^{-1}$
 - \blacksquare $\Lambda \otimes I_n + I_s \otimes J$
- s decoupled solves
- Problem: *X* is exponentially ill-conditioned wrt. *s*

Outline

The memory bandwidth problem

Implicit Runge-Kutta

Tensor product algebra

MatTAIJ: "sparse" tensor product matrices

$$G = I_n \otimes S + J \otimes T$$

- More general than multiple RHS (multivectors)
- Compare to multiple right hand sides in row-major
- Runge-Kutta systems have $T = I_s$ (permuted from Butcher method)
- Stream *J* through cache once, same efficiency as multiple RHS

128 nodes, 16 procs/node, small diffusion problem

Method	order	nsteps	time
Gauss 4	8	10	3.4345e-01
Gauss 2	4	20	7.6320e-01
Gauss 1	2	40	1.1052e+00

Calibration and accuracy

- Splitting errors plague multi-physics simulation
- Verlet (leapfrog) integration is popular: symplectic and cheap
 - Stability problems: damping and even/odd decoupling
- Models calibrated to compensate
 - Force parametrizations in molecular dynamics
 - Atmospheric column physics

Impact of time step on autoconversion vs accretion partitioning (from Hui)

Global Mean Normalized w.r.t. Default Model Configuration

c/o Peter Caldwell (LLNL)

- Models calibrated for "efficient" time step
- Not longer solving the PDEs we write down
- Many FTE-years to recalibrate when discretization changes
- Calibration eats up a big chunk of the IPCC policy timeline

Implicit Runge-Kutta for advection

Table: Total number of iterations (communications or accesses of J) to solve linear advection to t=1 on a 1024-point grid using point-block Jacobi preconditioning of implicit Runge-Kutta matrix. The relative algebraic solver tolerance is 10^{-8} .

Family	Stages	Order	Iterations
Crank-Nicolson/Gauss	1	2	3627
Gauss	2	4	2560
Gauss	4	8	1735
Gauss	8	16	1442

■ Naive centered-difference discretization

Trade-offs in time integration

- Properties
 - Nonlinear stability (e.g., positivity preservation)
 - Stability along imaginary axis
 - *L*-stability (damping at infinity)
 - Implicitness and reuse
- What is expensive?
 - Function evaluation
 - Operator assembly/preconditioner setup
 - How much can be reused for how long?
 - Implicit solves
 - Can we find better solver algorithm?
 - More effort in setup?
- What is "convergence"?
 - Wave propagation: implicitness useless for convergence in a norm
 - Non-norm functionals could be robust

Outlook

- Next up: Algebraic multigrid for tensor product operators
- Technicalities: imaginary rotation in coarse operators (cf. MG for Helmholtz)
- Stochastic Galerkin have some structure
- Is it possible to design methods with well-conditioned $S = X\Lambda X^{-1}$