A-Brain and Z-CloudFlow: Scalable Data Processing on Azure Clouds
Lessons Learned in 3 Years and Future Directions

A-Brain Project PIs: Gabriel Antoniu, Bertrand Thirion
Contributors: Alexandru Costan, Benoit Da Mota, Radu Tudoran and the Microsoft Azure team from EMIC

10th JLPC Workshop, NCSA, Urbana
25 November 2013
The Data@Exascale Associate Team (2013-2015)

Partners
- INRIA: Gabriel Antoniu, Matthieu Dorier, Radu Tudoran, Shadi Ibrahim, Alexandru Costan
- ANL: Kate Keahey, Rob Ross, Tom Peterka, Dries Kimpe, Franck Cappello
- ANL/UIUC: Marc Snir
- UIUC: Rob Sisneros, Dave Semeraro

Focus
- Open issues related to storage and I/O in HPC and clouds, data visualization and analysis
Data@Exascale: 2013 Highlights

Summer Internship of Matthieu Dorier at ANL

In Situ Visualization of HPC Simulations using Dedicated Cores (Damaris)
 • People involved: Matthieu Dorier, Gabriel Antoniu, Tom Peterka, Roberto Sisneros, Dave Semeraro, Lokman Rahmani (recently hired as a PhD student at INRIA/KerData)
 • Results: joint paper published at IEEE LDAV 2013, demo and poster at the Inria booth@SC13

Mitigating I/O Interference in Concurrent HPC Applications
 • People involved: Matthieu Dorier, Gabriel Antoniu, Shadi Ibrahim, Rob Ross, Dries Kimpe
 • Results: paper submitted to IPDPS 2014
Data@Exascale: 2013 Highlights

Summer Internship of Matthieu Dorier at ANL

In Situ Visualization of HPC Simulations using Dedicated Cores (Damaris)

- People involved: Matthieu Dorier, Gabriel Antoniu, Tom Peterka, Roberto Sisneros, Dave Semeraro, Lokman Rahmani (recently hired as a PhD student at INRIA/KerData)
- **Results**: joint paper published at IEEE LDAV 2013, demo and poster at the Inria booth@SC13

Mitigating I/O Interference in Concurrent HPC Applications

- People involved: Matthieu Dorier, Gabriel Antoniu, Shadi Ibrahim, Rob Ross, Dries Kimpe
- **Results**: paper submitted to IPDPS 2014

To learn more…

… attend Mathieu’s talk tomorrow at 9am! 😊
Data@Exascale: 2013 Highlights

Summer Internship of Radu Tudoran at ANL

Evaluating Streaming Strategies for Event Processing across Infrastructure Clouds

- People involved: Radu Tudoran, Kate Keahey, Gabriel Antoniu, Alexandru Costan, Sergey Panitkin
- Results: joint paper submitted to IEEE CCGRID 2014
Data@Exascale: 2013 Highlights

Summer Internship of Radu Tudoran at ANL

Evaluating Streaming Strategies for Event Processing across Infrastructure Clouds
 • People involved: Radu Tudoran, Kate Keahey, Gabriel Antoniu, Alexandru Costan, Sergey Panitkin
 • Results: joint paper submitted to IEEE CCGRID 2014

To learn more…

… attend Kate’s talk on Wednesday at 9:30am! 😊
The A-Brain Project: Data-Intensive Processing on Microsoft Azure Clouds

Application
- Large-scale joint genetic and neuroimaging data analysis

Goals
- **Application**: assess and understand the variability between individuals
- **Infrastructure**: assess the potential benefits of Azure

Approach
- Optimized data processing on Microsoft’s Azure clouds

Inria teams involved
- KerData (Rennes)
- Parietal (Saclay)

Framework
- Joint MSR-Inria Research Center
- MS involvement: Azure teams, EMIC
Motivating Application: The Imaging Genetics Challenge

Clinical / behaviour

Genetic information: SNPs

Here we focus on this link

MRI brain images
Neuroimaging-Genetics Studies

- Objective: find correlation between brain markers and genetic data to understand the behavioral variability and diseases

~10^6 Single nucleotid polymorphisms

MRI

behaviour
Statistical Analysis for Large-scale Neuroimaging-Genetics

- Image data → 4D to 2D, dimension $n_{\text{voxels}} \times n_{\text{subjects}}$
- Genetic data → dimension $n_{\text{snps}} \times n_{\text{subjects}}$
- Statistical question

$n_{\text{voxels}} = 10^6$
$n_{\text{snps}} = 10^6$
$n_{\text{subjects}} = 10^3$

Subject 1
Subject 2
... Subject n

Correlations ?

SNP data
Approach: A-Brain as Map-Reduce Processing

- read data
- OLS regression on original data
- caching
- permutation loop
- shuffle
- OLS regression
- sparsify result
- write result

map ... map ... map

combine ... combine

reduce

analyzer

read results
combine brain
cluster-level analysis
write result

read results
reduce (sum, min, ...)
write result
MAIN ACHIEVEMENTS ON THE INFRASTRUCTURE SIDE
Data-intensive Processing on Clouds: Challenges

- Computation-to-data latency is high
- Need scalable concurrent data accesses to shared data
- Need efficient Map-Reduce-like data processing
 - Hadoop is not the best we can get
 - The Reduce phase may be costly
Scalable Storage for Processing Shared Data on Azure Clouds: TomusBlobs

TomusBlobs

- Aggregates the virtual disks into a uniform storage service
- Relies on versioning to support high throughput under heavy concurrency
 - Leverages the BlobSeer data storage software (KerData)
- Transparent data chunk replication
Background: BlobSeer, a Software Platform for Scalable, Distributed BLOB Management

Started in 2008, 6 PhD theses (Gilles Kahn/SPECIF PhD Thesis Award in 2011)
Main goal: optimized for concurrent accesses under heavy concurrency

Three key ideas
Decentralized metadata management
Lock-free concurrent writes (enabled by versioning)
 Write = create new version of the data
Data and metadata “patching” rather than updating

A back-end for higher-level data management systems
Short term: highly scalable distributed file systems
Middle term: storage for cloud services

Our approach
Design and implementation of distributed algorithms
Experiments on the Grid’5000 grid/cloud testbed
Validation with “real” apps on “real” platforms: Nimbus, Azure, OpenNebula clouds…

http://blobseer.gforge.inria.fr/
Using TomusBlobs for A-Brain: Results

- Gain / Azure Blobs: ~50%
- Scalability: 1000 cores
- Demo available

http://www.irisa.fr/kerdata/doku.php?id=abrain
Extending the MapReduce Model: MapIterativeReduce

The Mapper:
- Classical map tasks

The Reducer
- **Iterative reduction** in two steps:
 - Receive the workload description from the Clients
 - Process intermediate results
- After each iteration, the termination condition is checked
Impact of MapIterativeReduce on A-Brain

![Graph showing the impact of MapIterativeReduce on A-Brain. The graph plots time (seconds) on the y-axis and the number of map jobs on the x-axis. Three lines are shown: TMR with Aggregator (red), MapIterativeReduce (green), and AMR with Aggregator (blue). The graph illustrates the increase in time as the number of map jobs increases.]
Beyond Single Site processing

- **Scenario**: data is produced in different locations or constrained (e.g. confidentiality)
- **Problem**: data movements across geo-distributed deployments are costly
- **Goal**: minimize the number of transfers and volumes of transferred data
- **Constraint**: single-site deployments work as independent services
- **Approach**: collaborative mechanism across datacenters to reach the common goal
Towards Geo-distributed TomusBlobs

- TomusBlobs for intra-deployment data management
- Public Storage (Azure Blobs/Queues) for inter-deployment communication
- Iterative Reduce technique for minimizing number of transfers (and data size)
- Balance the network bottleneck from single data center
MAIN ACHIEVEMENTS
ON THE APPLICATION SIDE
Contributions: RPBI – Improving Brain-wide Studies

Randomized-parcellation based inference

Step 0
Randomized parcellations (ward clustering)

- fMRI for n subjects
- 100 randomized parcellations

Step 1
Mean signal per parcel

Step 2
Statistic computation + thresholding → count detections per voxel

Step 3
10^4 permutations to obtain fewer-corrected p-values

FWER corr. p-values map
Contributions: Results of RPBI

Experiment with a few SNPs of the ARVCF gene (close to COMT): fMRI signals upon motor response errors

RPBI uncovers a more significant association than traditional approaches
Contributions:

Improving Genome-wide Studies

Do not try to localize a few SNPs (among 10^6): rather assess the joint effect of all SNPs against brain variables (heritability)

- common variants are responsible of a large portion of heritability
- address the *missing variance* problem [Yang et al. Nat.gen. 2010]

Regress all the SNPs together against a given brain activation measure

\[
\begin{align*}
\bar{Y} &= \mathbf{X}\beta_1 + \mathbf{Z}\beta_2 + \epsilon \\
\text{FMRI signal in a subcortical region} & \quad \text{All SNPs} \\
\text{Other regressors (confounds)} & \quad \text{Other regressors (confounds)}
\end{align*}
\]

[Da Mota et al., submitted to Frontiers in Neuroinformatics]
Contribute: Results with Heritability

<table>
<thead>
<tr>
<th>ROI name</th>
<th>$CV-R^2$</th>
<th>fwe corr. p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thalamus</td>
<td>left</td>
<td>0.026 1.10$^{-4}$</td>
</tr>
<tr>
<td></td>
<td>right</td>
<td>0.038 1.10$^{-4}$</td>
</tr>
<tr>
<td>Caudate</td>
<td>left</td>
<td>0.003 2.10$^{-4}$</td>
</tr>
<tr>
<td></td>
<td>right</td>
<td>-0.012 3.10$^{-4}$</td>
</tr>
<tr>
<td>Putamen</td>
<td>left</td>
<td>0.019 1.10$^{-4}$</td>
</tr>
<tr>
<td></td>
<td>right</td>
<td>0.006 2.10$^{-4}$</td>
</tr>
<tr>
<td>Pallidum</td>
<td>left</td>
<td>0.018 1.10$^{-4}$</td>
</tr>
<tr>
<td></td>
<td>right</td>
<td>-0.010 3.10$^{-4}$</td>
</tr>
<tr>
<td>Hippocampus</td>
<td>left</td>
<td>0.010 2.10$^{-4}$</td>
</tr>
<tr>
<td></td>
<td>right</td>
<td>0.020 1.10$^{-4}$</td>
</tr>
<tr>
<td>Amygdala</td>
<td>left</td>
<td>0.016 1.10$^{-4}$</td>
</tr>
<tr>
<td></td>
<td>right</td>
<td>0.015 1.10$^{-4}$</td>
</tr>
<tr>
<td>Accumbens</td>
<td>left</td>
<td>0.022 1.10$^{-4}$</td>
</tr>
<tr>
<td></td>
<td>right</td>
<td>-0.002 2.10$^{-4}$</td>
</tr>
</tbody>
</table>

Experiment on the Imagen dataset: heritability of the stop failure brain activation signals in the sub-cortical nuclei: The signals are significantly more heritable than chance in all regions considered.
What the Application Team Learned from A-Brain

- Using the cloud can be advantageous:
 - Do not need to own the cluster
 - Resources rented until the end of the computation
 - Ease of use: execute the same code as the usual one
- Progress still needed to get closer to the power of a bare cluster
Our experience on Azure in the A-Brain project

- Experiments performed on 1000 cores
- Multi-site processing
- Data centers used: West US, North US, West EU, North EU
- Long running experiments:
 timespan for 1 experiment 1-2 days up to ~ of 15 days
- More than 300,000 hours of computation used
Application deployment times

• High deployment times: for each new or updated deployment on Azure, the fabric controller prepares the nodes

• Bigger problems reported for Amazon EC2:
 “The most common failure is an inability to acquire all of the virtual machine images you requested because insufficient resources are available. When attempting to allocate 80 cores at once, this happens fairly frequently.”

• The deployment time was reduced after the major update from November 2012

• Can still be a problem for real time/near real time scaling
Experience with VM failures

Regular failures

• The general knowledge about the cloud:
 ▪ Commodity hardware will generate many failures
 ▪ Fault tolerance mechanism for failures: watch dog, checkpointing, replication

• Only a very small fraction of the machines failed even during the course of very long running executions
 ▪ During the 2 weeks experiments on several hundreds of nodes, only 3 machines failed (fail-stop-restart).
Experience with VM failures

Regular failures

- The general knowledge about the cloud:
 - Commodity hardware will generate many failures
 - Fault tolerance mechanism for failures: watch dog, checkpointing, replication
- Only a very small fraction of the machines failed even during the course of very long running executions
 - During the 2 weeks experiments on several hundreds of nodes, only 3 machines failed (fail-stop-restart).

Bad luck

During the 3 years experience in Azure 2 exceptional outages happened:
- 29 February 2012 – Demo in Saclay for Tony Hey
 - Azure down for leap year certificate problem
- 22 February 2013 – running the Big A-Brain Experiment
 - Azure fell down due to a failure in a security certificate

- Solution: Do not run experiments in February! ;-}
A-Brain: Two Things to Take Away

- The TomusBlobs data-storage layer developed within the A-Brain project was demonstrated to scale up to 1000 cores on 3 Azure data centers.

- It exhibits improvements in execution time close to 50% compared to standard solutions based on Azure BLOB storage.

- The consortium has provided the first statistical evidence of the heritability of functional signals in a failed stop task in basal ganglia, using a ridge regression approach, while relying on the Azure cloud to address the computational burden.
Publications

Journals

Electronic Journals

• Gabriel Antoniu, Alexandru Costan, Benoit Da Mota, Bertrand Thirion, Radu Tudoran. A-Brain: Using the Cloud to Understand the Impact of Genetic Variability on the Brain. ERCIM News, April 2012.
Publications

Conferences and workshops (2013)

• Benoit da Mota, Virgile Fritsch, Gaël Varoquaux, Vincent Frouin, Jean-Baptiste Poline, and Bertrand Thirion. Distributed High-Dimensional Regression with Shared Memory for Neuroimaging-Genetic Studies. in Euroscipy 2013.

Publications

Conferences and workshops (2012)

• Benoit Da Mota, Vincent Frouin, Edouard Duchesnay, Soizic Laguitton, Gaël Varoquaux, Jean-Baptiste Poline, Bertrand Thirion. A fast computational framework for genome-wide association studies with neuroimaging data. 20th International Conference on Computational Statistics (COMPSTAT 2012), Aug 2012, Lamissol, Cyprus.

People Involved

Gabriel Antoniu (INRIA, Project Lead)

Bertrand Thirion (INRIA, Project Lead)

Pierre Louis Xech (Microsoft)

Götz-Philip Brasche (Microsoft Research)

Benoit Da Mota (INRIA)

Hakan Soncu (Microsoft Research)

Alexandru Costan (INRIA)

Radu Tudoran (INRIA)
WHAT’S NEXT?

Z-CLOUDFLOW: DATA-INTENSIVE WORKFLOWS IN THE CLOUD (2013-2016)

Joint project
Inria-Microsoft Research Center

KerData
Scientific Workflow Scenario

1. Data is generated and collected
2. It is locally evaluated
3. Large volume of data produced ...
4. ...which need to be processed (HPC)
5. Final results generated in a reasonable time

- Provenance Data

The analysis uses a chain of programs that are data-intensive

Phylogenetic trees
Why to Use Multi-site Clouds for Workflows?

- Multisite cloud = a cloud with multiple data centers
 - Each with its own cluster, data and programs
 - Matches well the requirements of scientific apps
 - With different labs and groups at different sites
Open Issues for SWfMS in the Cloud

- Adaptive scheduling in heterogeneous, dynamic infrastructures
 - Strong variations of performance because of shared resources
- Automatic optimization and parallelization
 - As with our workflow algebra
- Exploiting data provenance at runtime to deal with dynamic workflows
 - Workflows that react to external events such as human interaction and dynamic steering
MultiSite Cloud Data Management: Challenges

• What strategies to use and how for efficient data transfers?

• How to group tasks and datasets together to minimize data transfers?

• How to do workload balancing between datacenters to avoid bottlenecks?
Our Approach to Go Further...

- Adapt workflow processing to the multisite cloud environment
 - Exploit cloud capabilities
- Adopt an algebraic approach for specifying workflows
 - Eases parallelization, optimization and scheduling
- Process workflow execution plans efficiently by optimizing data transfers during execution
 - Rely on an efficient distributed storage layer
- Build an appropriate cloud storage framework addressing the challenges of multisite clouds
A-Brain and Z-CloudFlow: Scalable Data Processing on Azure Clouds
Lessons Learned in 3 Years and Future Directions

Thank you!
MultiSite Cloud Data Management: Challenges

- **What strategies to use and how for efficient data transfers?**
 - Using monitoring-based performance modelling predict the best combination of protocols (e.g. memory-to-memory, FTP, BitTorrent) and transfer parameters (e.g. flow count, multicast enhancement, replication degree) to maximize throughput or minimize costs.

- **How to group tasks and datasets together to minimize data transfers?**
 - Utilizing dependencies among datasets and tasks, enhance data locality through efficient data and task co-scheduling strategies.

- **How to do workload balancing between datacenters to avoid bottlenecks?**
 - Cope with latency and performance variability due to multi-tenancy.
Needed: Monitoring Services for BigData

Variable performance
- Mainly due to multi-tenancy
- Need to predict the behavior of the underlying network and end-systems, in order to optimize the transfers over federated datacenters and partition the computation

Cloud introspection as a service

Monitoring API
- Monitoring and logging services for BigData
- Current cloud storage APIs do not support even simple operations on multiple files/blobs (e.g. grep, select/filter, compress, aggregate)

Towards a scientific Big Data processing toolkit?
Application: Current Status

- Good method for brain-wide association RPBI
- Genome-wide associations: build on the ridge-based heritability estimate
 - Analysis at the level of pathways, genes
 - Robust version of ridge regression?
- Progress still needed
 - Not enough data!
 - Need more precise hypotheses to test
Multi-Site MapReduce

- 3 deployments (NE, WE, NUS)
- 1000 CPUs
- ABrain execution across multiple sites