
Vincent Lanore
1
, Christian Pérez2

1 ENS de Lyon, 2 Inria
LIP, Avalon team

 06/14/2013 – 9th JLPC workshop

 Static 2D FFT Adaptation Through a
Component Model Based on Charm++

(preliminary results)

 2

Context: Adaptation and HPC

Context: HPC

Applications are used:

● on various architectures;

● with various input data and parameters.

Challenge: adaptation to improve performance.

Adaptation:

● To what? To architecture, to input parameters, to reservation size...

● When? At compile-time, at launch-time, at runtime...

● How? Parameter tweaking, low-level optimization,
algorithmic changes, application structure changes...

 3

Adaptation

Our focus:

● algorithmic-level adaptation;

● application structure adaptation.

How to implement as a developer?

Component models deal with application structure.

Goal of this presentation:

● illustrate adaptation challenges with the FFT example;

● evaluate the component approach for adaptation.

 4

Plan

● Distributed FFT

– Algorithms

– Performance analysis

● Gluon++: a Charm++ Component Model

– Overview

– 2D FFT in Gluon++

● Evaluation

– Performance

– Software engineering

● Conclusions & Perspectives

 5

Fast Fourier Transform

The Fast Fourier Transform (FFT):

● important tool in engineering and physics;

● used in many HPC applications.

– notably in large-scale numerical simulations

 distributed FFT⇒

 6

A widely-used Distributed FFT
Algorithm

Two repeating steps:

● local FFT;

● matrix transposition
(complete exchange).

 7

Performance, Data Size and
Architecture

Let N be the matrix size and p the number of cores.

Distributed FFT performance:

● High N/p local FFT is dominant;

– affected by node architecture, memory bandwidth...

– well-known problem, e.g. FFTW [3].
● Low N/p, high p transposition is dominant;

– affected by network latency, topology, bandwidth,
memory bandwidth...

⇒

⇒

 8

Linear Exchange (LEX)

Characteristics:

● variants: PEX, BEX;

● minimal data sent
and copied in
memory;

● messages;

● good with large N/p.

O(p²)

 9

Characteristics:

● messages;

● messages N/2 times
larger;

● good with small N/p
and large p.

Recursive Exchange (REX)

O(p×log(p))

 10

FFT Adaptation

Matrix transposition:

● select BEX/PEX/LEX or REX
depending on N and p;

● many more variants, e.g. from MPI [1,2].

Matrix decomposition: e.g. 3DFFT → slab or pencils [4].

Local FFT: e.g. FFTW codelets [3].

Such adaptations rely on variant selection.
Existing solutions → specialized frameworks;

As a developer how to:

● develop and maintain variants;

● select variants (manually or automatically).

 11

Plan

● Distributed FFT

– Algorithms

– Performance analysis

● Gluon++: a Charm++ Component Model

– Overview

– 2D FFT in Gluon++

● Evaluation

– Performance

– Software engineering

● Conclusions & Perspectives

 12

Component Models

Components = black boxes that interact through ports

Application = assembly of component instances

 13

Charm++

Charm++
developed in the Parallel Programming Laboratory at the University of Illinois

● Message-passing object-oriented language;

– objects: “chares”;

– distant asynchronous method calls through proxies.
● Platform-independent;

– mapping chares to PEs;

– chare arrays and groups (1 chare/PE).
● Performance;

– latency tolerance;

– dynamic load balancing.

 14

Gluon++

Assembly in separate file:
● instance list;

● placement on PEs;

● parameters.

gluon_loader
● loads required

components only;

● resulting application is
“component-free”.

developed by Julien Bigot in the Avalon team (Inria, LIP)

 15

Gluon++

Assembly in separate file:
● instance list;

● placement on PEs;

● parameters.

gluon_loader
● loads required

components only;

● resulting application is
“component-free”.

developed by Julien Bigot in the Avalon team (Inria, LIP)

 16

FFT2D in Gluon++

Code reuse: 2D matrix transposition from 1D FFT in gluon++.

Local FFT: FFTW (in Component Algo).

 17

FFT2D in Gluon++

Code reuse: 2D matrix transposition from 1D FFT in gluon++.

Local FFT: FFTW (in Component Algo).

 18

Plan

● Distributed FFT

– Algorithms

– Performance analysis

● Gluon++: a Charm++ Component Model

– Overview

– 2D FFT in Gluon++

● Evaluation

– Performance

– Software engineering

● Conclusions & Perspectives

 19

Evaluation: Performance (1)

8-core nodes; 1PE/core. Infiniband network.

“Weak scaling”: N/p is constant. High N/p: per proc.p×500kB

T
im

e
(s

)

Grid'5000

Griffon cluster
#cores

 20

Evaluation: Performance (2)

8-core nodes; 1PE/core. Infiniband network.

“Weak scaling”: N/p is constant. N/p=1.

T
im

e
(s

)

Grid'5000

Griffon cluster
#cores

 21

Evaluation: Software Engineering

Component development:

● raw Charm++ programming
plus a few macro calls;

● LEX/PEX/BEX → reuse of existing
component + copy/paste/rename
+ a few lines of code (<1 hour);

● REX → from scratch, a few days;

Component assembly:

● 20-line XML file;
4/5 lines per component;

● variant selection → one word;

● set attribute values;

● no recompilation.

Making a new component:

● (write new charm interface file);

● write new .cpp file

● compile component into .so;

● ready to use in assembly.

Component development
and compilation
→ fully independent

 22

Discussion

 Thanks to Charm++:

● easy component programming;

● performance.

Thanks to components:

● independent component
development;

● easy assembly.

Gluon++ is a suitable solution for component design,
concrete assembly and execution.

Remaining problem: how to generate gluon assembly?

→ to optimize performance;

→ while preserving component-independence.

Possible solution: generate from a high-level model.

 23

Plan

● Distributed FFT

– Algorithms

– Performance analysis

● Gluon++: a Charm++ Component Model

– Overview

– 2D FFT in Gluon++

● Evaluation

– Performance

– Software engineering

● Conclusions & Perspectives

 24

Conclusions and future work

Challenge:
● adaptation for HPC; variant selection;

● developer perspective.

Proposed answer: Gluon++
● Charm++;

● Components.

First external user of Gluon++.

Evaluation with 2D FFT:
● good performance on Grid'5000;

● easy variant development and selection.

Perspectives:

● more experiments
(BlueWaters? Curie?);

● HLCM;

● 3D implementation;

– slab/pencil
decomposition;

– comparison with
Charm++ 3D FFT.

 25

References

● [1] Rajeev Thakur, Rolf Rabenseifner and William Gropp
Optimization of Collective communication operations in
MPICH, International Journal of High Performance Computing
Applications, 2005

● [2] Jeffrey M. Squyres and Andrew Lumsdaine, The
Component Architecture of Open MPI: Enabling Third-Party
Collective Algorithms, Component Models and Systems for
Grid Applications, 2005

● [3] Matteo Frigo and Steven G. Johnson, The Design and
Implementation of FFTW3, Proceedings of the IEEE, 2005

● [4] R. Schultz, 3D FFT with 2D decomposition, CS project
report, Center for molecular Biophysics, 2008

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

