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Context: Adaptation and HPC

Context: HPC

Applications are used:

● on various architectures;

● with various input data and parameters.

Challenge: adaptation to improve performance.

Adaptation:

● To what? To architecture, to input parameters, to reservation size...

● When? At compile-time, at launch-time, at runtime...

● How? Parameter tweaking, low-level optimization,
algorithmic changes, application structure changes...
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Adaptation

Our focus:

● algorithmic-level adaptation;

● application structure adaptation.

How to implement as a developer?

Component models deal with application structure.

Goal of this presentation: 

● illustrate adaptation challenges with the FFT example;

● evaluate the component approach for adaptation.
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Fast Fourier Transform

The Fast Fourier Transform (FFT):

● important tool in engineering and physics;

● used in many HPC applications.

– notably in large-scale numerical simulations

                    distributed FFT⇒
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A widely-used Distributed FFT 
Algorithm

Two repeating steps:

● local FFT;

● matrix transposition
(complete exchange).
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Performance, Data Size and 
Architecture

Let N be the matrix size and p the number of cores.

Distributed FFT performance:

● High N/p          local FFT is dominant;

– affected by node architecture, memory bandwidth...

– well-known problem, e.g. FFTW [3].
● Low N/p, high p          transposition is dominant;

– affected by network latency, topology, bandwidth, 
memory bandwidth...

⇒

⇒
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Linear Exchange (LEX)

Characteristics:

● variants: PEX, BEX;

● minimal data sent 
and copied in 
memory;

●         messages;

● good with large N/p.

O( p² )
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Characteristics:

●                  messages;

● messages N/2 times 
larger;

● good with small N/p 
and large p.

Recursive Exchange (REX)

O( p×log( p))
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FFT Adaptation

Matrix transposition:

● select BEX/PEX/LEX or REX
depending on N and p;

● many more variants, e.g. from MPI [1,2].

Matrix decomposition: e.g. 3DFFT → slab or pencils [4]. 

Local FFT: e.g. FFTW codelets [3].

Such adaptations rely on variant selection.
Existing solutions → specialized frameworks; 

As a developer how to:

● develop and maintain variants;

● select variants (manually or automatically).
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Component Models

Components = black boxes that interact through ports

Application = assembly of component instances
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Charm++

Charm++
developed in the Parallel Programming Laboratory at the University of Illinois

● Message-passing object-oriented language;

– objects: “chares”;

– distant asynchronous method calls through proxies.
● Platform-independent;

– mapping chares to PEs;

– chare arrays and groups (1 chare/PE).
● Performance;

– latency tolerance;

– dynamic load balancing.
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Gluon++

Assembly in separate file:
● instance list;

● placement on PEs;

● parameters.

gluon_loader
● loads required

components only;

● resulting application is 
“component-free”.

developed by Julien Bigot in the Avalon team (Inria, LIP)
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FFT2D in Gluon++

Code reuse: 2D matrix transposition from 1D FFT in gluon++.

Local FFT: FFTW (in Component Algo).
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FFT2D in Gluon++

Code reuse: 2D matrix transposition from 1D FFT in gluon++.

Local FFT: FFTW (in Component Algo).
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Evaluation: Performance (1)

8-core nodes; 1PE/core. Infiniband network.

“Weak scaling”: N/p is constant. High N/p:                  per proc.p×500kB
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Evaluation: Performance (2)

8-core nodes; 1PE/core. Infiniband network.

“Weak scaling”: N/p is constant. N/p=1.

T
im

e 
(s

)

Grid'5000

Griffon cluster
#cores



  21

Evaluation: Software Engineering

Component development:

● raw Charm++ programming
plus a few macro calls;

● LEX/PEX/BEX → reuse of existing 
component + copy/paste/rename
+ a few lines of code (<1 hour);

● REX → from scratch, a few days;

Component assembly:

● 20-line XML file; 
4/5 lines per component;

● variant selection → one word;

● set attribute values;

● no recompilation.

Making a new component:

● (write new charm interface file);

● write new .cpp file

● compile component into .so;

● ready to use in assembly.

Component development
and compilation
→ fully independent
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Discussion

 Thanks to Charm++:

● easy component programming;

● performance.

Thanks to components:

● independent component 
development;

● easy assembly.

Gluon++ is a suitable solution for component design,
concrete assembly and execution.

Remaining problem: how to generate gluon assembly?

→ to optimize performance;

→ while preserving component-independence.

Possible solution: generate from a high-level model.
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Conclusions and future work

Challenge:
● adaptation for HPC; variant selection;

● developer perspective.

Proposed answer: Gluon++
● Charm++;

● Components.

First external user of Gluon++.

Evaluation with 2D FFT:
● good performance on Grid'5000;

● easy variant development and selection.

Perspectives:

● more experiments 
(BlueWaters? Curie?);

● HLCM;

● 3D implementation;

– slab/pencil 
decomposition;

– comparison with 
Charm++ 3D FFT.
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