
1

Replication
for Large-Scale MPI Applications

Arnaud Lefray, Thomas Ropars, André Schiper

Distributed Systems Laboratory

2

Failure is a Major Concern at Scale

 One of the main challenges for future Exascale systems

➔ MTBF of a few hours (or even tens of minutes)

➔ Increased rate of undetected errors

➔ Not our concern in this talk

 The strategy based on global checkpoints on a Parallel File
System will not work

➔ Too much time to save a checkpoint

➔ Too much time to recover

3

If checkpointing is so costly, why not using
replication?

 Replication (Duplication) can make sense if

➔ More than 50% of the time is spent dealing with failures

 “Evaluating the viability of Process Replication Reliability for
Exascale Systems” (SC11, Ferreira et al)

➔ Combining global checkpoints and dual replication:

➔ Reduces the risk of rollback
➔ Reduce checkpoint frequency

➔ Replication has advantages at scale but:

➔ Compared to basic checkpointing strategies

4

Improved Checkpointing Strategies

 Multi-level checkpointing

➔ Use of intermediate storage to save checkpoints

➔ RAM, local disks
➔ Encoding techniques

 Hierarchical checkpointing protocols

➔ Failure containment

➔ Combines coordinated checkpoints with message logging

 Use of applications' communication characteristics

➔ Send-determinism

➔ Uncoordinated checkpoints without domino effect

Can we also improve replication techniques?

5

Contributions

 Improved replication protocol for MPI applications

➔ SDR-MPI: send-deterministic-based replication

➔ Prototype in Open MPI

➔ High performance (less than 5%)

 A protocol to share work between active tasks

➔ Intra-MPI: interface to share work

➔ Breaks the 50% max efficiency: up to 80% efficiency

6

Replicated MPI Protocol

Mirror Protocol Parallel Protocol

7

Existing Replication Solutions

 Reliable delivery of messages

➔ Parallel or Mirror protocol

➔ Our solution: parallel protocol with
acks by the receivers

 Total order message delivery

➔ Leader-based protocol

➔ Our solution: Leveraging send-
determinism

 Implemented at the PMPI level

➔ Fully independent of the MPI library

➔ Low performance + incomplete MPI support

➔ Our solution: integration in Open MPI

Leader-based protocol

8

Send-determinism

 Definition: For a given set of input parameters, the sequence
of messages sent by a process of a send-deterministic
application is the same in any correct execution.

 Study of a representative set of HPC workloads [Cappello et
al, 2010]

➔ Most HPC workloads are send-deterministic

 It implies that:

➔ The order of delivery of concurrent messages has no impact on the
execution of the process

9

SDR-MPI: Replication for send-deterministic
applications

 No need for a leader-based protocol

➔ Messages can be delivered in a different order on different replicas

Leader-based protocol No leader

10

Implementation in Open MPI

 On top of the the point-to-point
management layer (PML)

➔ Use of the vProtocol interface

 Slight modification of the PML

➔ Interception of the recv_complete event

 Characteristics:

➔ Fully transparent for the application

➔ Supports all collective/group operations

11

Performance evaluation

 Experimental setup:

➔ 64 nodes (8 cores , 16 GB of memory)

➔ Infiniband 20Gbps

➔ Replicas on different nodes

 Failure free performance:

➔ NAS benchmarks

➔ HPCCG, CM1 (include any_source)

12

Performance evaluation

Application Overhead

BT 1.49%

CG 4.92%

FT 3.04%

MG 2.56%

SP 2.41%

HPCCG 0%

CM1 3.14%

Less than 5% overhead with all applications

13

Contributions

 Improved replication protocol for MPI applications

➔ SDR-MPI: send-deterministic-based replication

➔ Prototype in Open MPI

➔ High performance (less than 5%)

 A protocol to share work between active tasks

➔ Intra-MPI: interface to share work

➔ Breaks the 50% max efficiency: up to 80% efficiency

14

Intra-parallelization

 Goal: Avoid executing two times all computation tasks

➔ Run the computation on one replica and share the results with other
replicas

➔ A task: set of instructions that does not include communication

15

Handling failures: dealing with dependencies between
instructions

 An example of task

 Variable “a” is read and then
modified

a=1
section Section1
task Task1

b=a
a=2

16

Handling failures: dealing with dependencies between
instructions

 An example of task

 Variable “a” is restored at the
beginning of the task

a=1
a'=a
section Section1
task Task1
a=a'
b=a
a=2

17

Current Implementation

 Declare sections and tasks

 Declare variables

➔ Outputs of the task

➔ That need to be copied

 Algorithm executed by each replica

➔ Get next task (deterministic)

➔ If task is not completed

➔ Make required data copies
➔ Execute the task
➔ Send results to other replicas

18

Evaluation with CM1 (microphy)

 2x64 cores (infiniband)

 80% efficiency

19

Conclusion

 We manage to achieve more than 50% efficiency with
replication

➔ SDR-MPI: Efficient replication protocol

➔ Share work between replicas

 It is different from in-memory checkpointing

➔ Data is also replicated in memory

➔ But no rollback (and so, no recovery)

 Can it be interesting in some use-cases?

 We would be happy to have some collaborations

20

Replication
for Large-Scale MPI Applications

Arnaud Lefray, Thomas Ropars, André Schiper

Distributed Systems Laboratory

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20

