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Motivation

Large Sparse discretized system with
strongly heterogeneous coefficients

(high contrast, nonlinear, multisca

E.g. Darcy pressure equation,
P-finite elements:

AU=F

cond(A) ~ S -2
Omin
Goal:
iterative solvers
robust in size and heterogeneities

le)

Applications:

flow in heterogeneous /
stochastic / layered media

structural mechanics

time dependent waves

etc.
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where
oj(U) = 2pe;(u) + Agjdiv(u),  e;(u) = 3 (%;I + %) ,
f=(0,9)7 = (0,10)7, 4=t

2(1+rv) A= 7(1%)(’1/721/)-
After a FEM (fintie element method) discretization:

=AU=F

where A is a large sparse highy heterogeneous matrix.
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Black box solvers (solve(MAT,RHS,SOL))

Direct Solvers | lterative Solvers

Pros | Robustness Naturally ||

Cons | Difficult to || Robustness

Domain Decomposition Methods (DDM): Hybrid solver —
should be naturally parallel and robust
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Black box solvers (solve(MAT,RHS,SOL))

Direct Solvers | lterative Solvers

Pros | Robustness Naturally ||

Cons | Difficult to || Robustness

Domain Decomposition Methods (DDM): Hybrid solver —
should be naturally parallel and robust

General form:
Au = f, solved with PCG for a preconditioner M~

What's classical: Robustness with respect to problem size

(scalability)
What's New here: Provable Robustness in the SPD case with

respect to:
@ Coefficients jumps
@ System of PDEs

F. Nataf et al BB DDM



The First Domain Decomposition Method

The original Schwarz Method (H.A. Schwarz, 1870)

Qo
—A(u)="f inQ

u=0 onoNQ.

Schwarz Method : (uf, ug) — (uf™!, ug™™) with

~AUTY =1 inQ ~A(uFTYy =1 inQ
Uttt =00n 9Q NN Ul = 00on 90 NN
ultt = ug  on 09 N Qy. Uttt =ut on 9 N Q.

Parallel algorithm, converges but very slowly, overlapping
subdomains only.
The parallel version is called Jacobi Schwarz method (JSM).
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Jacobi and Schwarz (1): Algebraic point of view

The set of indices is partitioned into two sets Ay and ANa:

<A11 A12)(X1 >:(b1>
A1 Az X2 bo

The block-Jacobi algorithm reads:

Atq 0 X1k+1 0 Aio X1k b4
k41 = - Kk |t
0 A22 X2 A21 0 X2 b2

It corresponds to solving a Dirichlet boundary value problem in
each subdomain with Dirichlet data taken from the other one at
the previous step <= Schwarz method with minimal overlap

1 2
O—0—0—"0—0—"0—"0—"0—"—0—"0—"0—"0—70
1 2

Figure : Domain decomposition with minimal overlap
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Jacobi and Schwarz (ll): Larger overlap

Let § be a non negative integer

1 2

T ng + 0

Figure : Domain decomposition with overlap

Figure : Matrix decomposition Without or with overlap
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Strong and Weak scalability

How to evaluate the efficiency of a domain decomposition?

Strong scalability (Amdahl)

"How the solution time varies with the number of processors for
a fixed fotal problem size”

Weak scalability (Gustafson)

"How the solution time varies with the number of processors for
a fixed problem size per processor”

Not achieved with the one level method

Number of subdomains 16
ASM 18 35 66 128

The iteration number increases linearly with the number of
subdomains in one direction.
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How to achieve scalability

Stagnation corresponds to a few very low eigenvalues in the
spectrum of the preconditioned problem. They are due to the
lack of a global exchange of information in the preconditioner.
—Au="finQ
u=00no9oQ

The mean value of the solution in domain i depends on the
value of f on all subdomains.

A classical remedy consists in the introduction of a coarse
problem that couples all subdomains. This is closely related to
deflation technique classical in linear algebra (see Nabben and
Vuik’s papers in SIAM J. Sci. Comp, 200X) and multigrid
techniques.
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Adding a coarse space

We add a coarse space correction (aka second level)
Let Vi be the coarse space and Z be a basis, Vy = spanZ,
writing Ry = ZT we define the two level preconditioner as:

N
_ —1 _
Mudu2 = RS (RoAR]) Ro+Y RIATR:.
i=1
The Nicolaides approach is to use the kernel of the operator as
a coarse space, this is the constant vectors, in local form this

writes:
Z .= (RT DiRN)1<i<n

where D; are chosen so that we have a partition of unity:

N
> RIDR; =Id.

i=1
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Theoretical convergence result

Theorem (Widlund, Dryija)

Let M;;.M , be the two-level additive Schwarz method:

H
K(Mady2A) < C (1 + 3>

where § is the size of the overlap between the subdomains and
H the subdomain size.

<

This does indeed work very well

Number of subdomains | 8 | 16 | 32 | 64
ASM 18 | 35 | 66 | 128
ASM + Nicolaides 20 | 27 | 28 | 27
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Failure for Darcy equation with heterogeneities

—V-(a(x,y)Vu) = 0 in QcCR2?

u = 0 on 0Qp,
g% = 0 on 9.
Il B8
Decomposition a(x,y)
Jump 1 10 102 [10° [ 107
ASM 39 (45| 60 | 72 | 73

ASM + Nicolaides | 30 | 36 | 50 | 61 65

Our approach

Fix the problem by an optimal and proven choice of a coarse
space Z.
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© An abstract 2-level Schwarz: the GenEO algorithm
@ Choice of the coarse space
@ Parallel implementation
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Objectives

Define an appropriate coarse space Vi, = span(Z>) and use
the framework previously introduced, writing Ry = Z; the two
level preconditioner is:

N
_ 1 B
PA§M2 = HJ(ROAR(;-) RO + E R,'TAI- 1R,'.
i=1

The coarse space must be

@ Local (calculated on each subdomain) — parallel
@ Adaptive (calculated automatically)
@ Easy and cheap to compute

@ Robust (must lead to an algorithm whose convergence is
proven not to depend on the partition nor the jumps in
coefficients)
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Abstract eigenvalue problem

Gen.EVP per subdomain:

Find p; x € thj and )\, > 0:
ag,(Pjk, V) = Ak aae(Sipjk, V) YV € Vg

Ajpj,k = )\j.k X/AIOXJ P« (X; ...diagonal)

ap ... restriction of ato D

In the two-level ASM:
Choose first m; eigenvectors per subdomain:

Vo = span{ZpH
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Abstract eigenvalue problem

Gen.EVP per subdomain:

Find p; x € thj and )\, > 0:
ag,(Pjk, V) = Ak aae(Sipjk, V) YV € Vg

Ajpj,k = )\j.k X/AIOXJ P« (X; ...diagonal)

ap ... restriction of ato D

In the two-level ASM:
Choose first m; eigenvectors per subdomain:

Vo = span{ZpH

This automatically includes Zero Energy Modes.
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Comparison with existing works

Galvis & Efendiev (SIAM 2010):

/ K,V,Dj’k -Vvdx = )\j.k / K Pj k v dx Yv e Vh|Q/-
o, : “ o, :
Efendiev, Galvis, Lazarov & Willems (submitted):
ag, (P> V) = Nk Y a(§&ipik &) Vv e Vg
ieneighb(j)
& ... partition of unity, calculated adaptively (MS)
Our gen.EVP:

ao,(Pjk, V) = Ak @ae(SiPjk, V) YV € Vg

both matrices typically singular = \; x € [0, oc]

F. Nataf et al BB DDM



Two technical assumptions.

Theorem (Spillane, Dolean, Hauret, N., Pechstein, Scheichl)
Ifforallj: 0 <Ajm,  <oo!

_q N 1
<
W(MaguzA) < (14 ko) [2+ ko (ko +1) max (1 n A,-,m,ﬂﬂ

Possible criterion for picking mj: (used in our Numerics)

A o
,mji—+-1 m
! H

H; ... subdomain diameter, 9, . .. overlap
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Eigenvalues and eigenvectors

e Con
=== =
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Numerical results via a Domain Specific Language

FreeFem++ (http://www.freefem.org/ff++), with:

@ Metis Karypis and Kumar 1998 @ Intel MKL

@ SCOTCH chevalier and Pellegrini 2008 @ PARDISO schenk et al. 2004
@ UMFPACK Davis 2004 @ MUMPS Amestoy et al. 1998
@ ARPACK Lehoucq et al. 1998 @ PaStiX Hénon et al. 2005

@ MPI sniretal. 1995 e PETSC

Why use a DS(E)L instead of C/C++/Fortran/.. ?
@ performances close to low-level language implementation,
@ hard to beat something as simple as:
varf a(u, v) = int3d(mesh)([dx(u), dy(u), dz(u)]’ * [dx(v), dy(v), dz(v)])
+ int3d(mesh)(f * v) + on(boundary mesh)(u = 0)
@ Much More in F. Hecht’s talk tomorrow
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http://www.freefem.org/ff++)

Strong scalability in two dimensions heterogeneous

elasticity (P. Jolivet with Frefeem ++)

Elasticity problem with heterogeneous coefficients

|
(3]
S
x Fiterations

—e—Timing relative to 1024 processes

—— Linear speedup |1 10
|

1
K 2 7, 8
[25) o Og& 0‘96‘ ]{92

F#processes

Speed-up for a 1.2 billion unknowns 2D problem. Direct solvers
in the subdomains. Peak performance wall-clock time: 26s.
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Strong scalability in three dimensions heterogeneous

elasticity

Elasticity problem with heterogeneous coefficients

|
(3]
S
x Fiterations

—e—Timing relative to 1024 processes

—— Linear speedup |1 10
| |

Z 094 90 25 <, 096‘ 7 ]71

F#processes

Speed-up for a 160 million unknowns 3D problem. Direct
solvers in subdomains. Peak performance wall-clock time: 36s.
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Weak scalability in two dimensions

Darcy problems with heterogeneous coefficients
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Efficiency for a 2D problem. Direct solvers in the subdomains.
Final size: 22 billion unknowns. Wall-clock time: ~ 200s.

F. Nataf et al BB DDM



Weak scalability in three dimensions

Darcy problems with heterogeneous coefficients
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Efficiency for a 3D problem. Direct solvers in the subdomains.
Final size: 2 billion unknowns. Wall-clock time: ~ 200s.
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e Conclusion
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Conclusion

@ Using generalized eigenvalue problems and projection
preconditioning we are able to achieve a targeted
convergence rate.

@ Works for ASM, BNN and FETI methods
@ This process can be implemented in a black box algorithm.

@ Build the coarse space on the fly.

@ Multigrid like three (or more) level methods
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Conclusion

@ Using generalized eigenvalue problems and projection
preconditioning we are able to achieve a targeted
convergence rate.

@ Works for ASM, BNN and FETI methods
@ This process can be implemented in a black box algorithm.

@ Build the coarse space on the fly.

@ Multigrid like three (or more) level methods

THANK YOU FOR YOUR ATTENTION!
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