Joint La b‘gﬁa :

* .for Petascale Computation .

Topics for Collaboration in

Numerical Libraries

William Gropp
www.cs.illinois.edu/~wgropp




Jaint Lab@ e
O\ '\ for Petascale Computation .

"Library and Algorithm
Issues at Scale

* Barriers to Scalability
— Communication

e Total volume
* Synchronizing communication (e.g., dot product)

* Computation/communication balance (e.g., extra computation for
communication)

— Nonblocking vs. pipelines

— Load balance

 Static work decomposition
— Coarse grain (partitioning), fine grain (loop decomposition)
* Dynamic work decomposition

— Low overhead, guided by communication activity



Joint Lab@ e
(\ | * ufor Petascale Computation 0 1

and Algorithm
Issues at Scale

Architectural Evolution
— GPUs; new generation of vector/stream algorithms
— CPU + GPU (heterogeneous)

* Barriers to Experimentation
— Test cases and frameworks

* Barriers to Understanding
— Performance models

e Barriers to adoption
— Risk to adopters — cost/benefit analysis
— Data structure changes



Idmt Lab8Fa

Jfor Petascale omputatlon 2

Purpose

* Bring complementary skills together to solve problems in
numerical analysis for extreme scale platforms

* Current areas of interest and activity
— Dense linear algebra

— Sparse linear algebra and preconditioners
— 3D FFTs

* Other areas of interest include
— Alternatives to algorithms that use alltoall
— Memory locality efficient methods for CPUs and GPUs
— Heterogeneous-friendly algorithms
— Latency tolerant or synchronization avoiding algorithms



Joint Lab@ e
(\ | * ufor Petascale Computation 00 = \ A
7% () 4 ']

* Blue Waters applications (“PRAC”) provide
good drivers

— FFT for DNS, preconditioning for MILC

— Need new algorithms for new execution model

* GPUs have different memory model that further
emphasizes medium-grain memory regularity

— Top to bottom heterogeneity and irregularity of
resource availability also requires new thinking



\ e . 5 \ vl \
Jaint Lab@, W ek \
(¢ ufor Petascale Computation 20 ¥ \ '
\ s i : . ¥ - "v ...— e
A\ ///. ‘ = ¢ % \
1 3 A\

 Two of the PRAC teams are looking for faster
Poisson solvers

— One currently using FFT from UCSD P3DFFT

— One using CG/ILU and looking at MG (CG/MG?)
 What teams need and what they want may

not be the same

— Alternative problem formulations?

— CG without blocking synchronization?

— Effective use of nearby solutions? i



Idmt Lab8Fa

Jfor Petascale omputatlon 2

1

Multiple chips per node;
different access to local memory
and to interconnect; multiple
cores per chip

Mesh has different bandwidths
in different directions

Allocation of nodes may not be
regular (you are unlikely to get a
compact brick of nodes)

Some nodes have GPUs

* Most algorithms designed for
simple hierarchies and ignore
network issues

5 rithms and Topology

Complex hlerarchy

25—

00000000 -
00000000

O 00000000

20—

0000000000
0000000000
O 00000000

0000000000
0000000000

15—

000000000
000000000

10—

Q0000000000000 OO00O0O000

0000
0000000000000 00000000000

00000000000000000000 000

0000
. o000

0000
0000000 OOOOOOOOOOOOO 000

0000000000000000000000 00

Q000 |
0000000000000 00000000000

(8}
l
00 0 -

215 21 20.5

20 195 19 185 1

Recent work on general topology
mapping e.g.,
Generic Topology Mapping Strategies for
Large-scale Parallel Architectures,
Hoefler and Snir



Iamt Lab w
) forPetascale omputatlon 2

Dy W Require New,
More Integrated Approaches

* Performance irregularities mean that classic approaches to
decomposition are increasingly ineffective
— Irregularities come from OS, runtime, process/thread placement,
memory, heterogeneous nodes, power/clock frequency management
» Static partitioning tools can lead to persistent load imbalances
— Mesh partitioners have incorrect cost models, no feedback mechanism
— “Regrid when things get bad” won’t work if the cost model is
incorrect; also costly
e Basic building blocks must be more dynamic without
introducing too much overhead



| foint La N

* .for Petascale Computation _.

inication Cost Includes More than
Latency and Bandwidth

e Communication does not
happen in isolation

 Effective bandwidth on shared
link is %2 point-to-point
bandwidth

* Real patterns can involve many
more (integer factors)

* Loosely synchronous algorithms
ensure communication cost is
worst case




!
Idmt Lab w g
\ forPetascale omputatlon 2
”,'

B\ Halo Exchange on BG/Q and Cray XE6
%" 2048 doubles to each neighbor
* Rate is MB/sec (for all tables)

BG/Q 8 Neighbors

Irecv/Send Irecv/Isend
World 662 1167
Even/Odd 711 1452
1 sender 2873
Cray XE6 8 Neighbors

Irecv/Send Irecv/Isend
World 352 348
Even/Odd 338 324
1 sender 5507

10



faint Léb@ -

® Based on our performance model, we expect the rate to be roughly twice
that for the halo (since this test is only sending, not sending and receiving)

* .for Petascale Computation _.

g \ Ik
7% Lets look at a single process sending to its neighbors.

System 4 neighbors 8 Neighbors

Periodic Periodic
BG/L 488 490 389 389
BG/P 1139 1136 892 892
BG/Q 2873
XT3 1005 1007 1053 1045
XT4 1634 1620 1773 1770
XE6 5507

11



Jaint Labw e |
(\ ! ufor Petascale Computation 20

® Expect a factor of roughly 2 (since processes must also receive)

System 4 neighbors 8 Neighbors
Periodic Periodic
BG/L 2.24 2.01
BG/P 3.8 2.2
BG/Q 1.98
XT3 7.5 8.1 9.08 9.41
XT4 10.7 10.7 13.0 13.7
XE6 15.6 15.9

= BG gives roughly double the halo rate. XTn and XE6 are much higher.
= |t should be possible to improve the halo exchange on the XT by scheduling the communication

= Or improving the MPIl implementation 12



Jaint Lab@ e
O\ '\ for Petascale Computation .

cling Problems

Simple, data-parallel algorithms easy to reason about but
inefficient

— True for decades, but ignored (memory)
— Log p terms can dominate at p = 10°
* One solution: fully asynchronous methods

— Very attractive (parallel efficiency high), yet solution efficiency is low
and there are good reasons for that

— Blocking (synchronizing) communication can be due to fully collective
(e.g., Allreduce) or neighbor communications (halo exchange)

Can we save methods that involve global, synchronizing operations?

13



Jaint Lab@ e
(\ | ¢ ufor Petascale Computation

Reconsidered

* By reordering operations, nonblocking dot products (MPI_lallreduce in
MPI-3) can be overlapped with other operations

* Trades extra local work for overlapped communication

— On a pure floating point basis, our nonblocking version requires 2
more DAXPY operations

— A closer analysis shows that some operations can be merged (in
terms of memory references)

e Count memory motion, not floating point

* Other approaches possible; see “Hiding global synchronization latency
in the preconditioned Conjugate Gradient algorithm,” P. Ghysels and W.
Vanroose.

* More work does not imply more time

14



Jaint L3588

* .for Petascale Computation _.

atrix-vector Multiply on GPUs

Continuation of work from 30.00
last year by Dahai Guo oo L ® N ¢ EveYe
_ . . TS ”’ * ¢ X NVIDIA
* Basicideais a hybrid X X . BEST
20.00
format, with adaptively o %k ox,* ¢
. . o. X ¢ o
distributed work (based on Q500 g S
. © X “eX ¢
matrix structure) o 8 X* e
* “Best of all worlds” VRN
5.00 ¢
approach X X o,
— Faster than NVIDIA sparse o e e
matrix library @&6“}&%&@@&5\\@&“ & gq*:é@"{@b"
% &7 < ° Q‘,Q‘o S > A
— Robust performance S 0 &

* Looking for applications!

15



Joint Labw e
(\ |1 ufor Petascale Computation _2 0

* Assigning jobs to nodes in a large system is a challenging
problem

— A version of a set assignment problem

— Hard problem — but can use all unused nodes on parallel system to
look for a better solution (power cost relatively low because of idle
power)

— Total number of queued jobs is not the correct measure of the
problem size — often, many jobs are identical to the queuing system. #
of different equivalence classes are a better measure

* User resource requests inaccurate, particularly time.

— Would assigning jobs based on expected time produce a significantly

different solution?

— How would it interact with scheduling policy and guarantees? *



Jaint Labﬂ;@ P Sk
(\ | ¢ ufor Petascale Computation

* Policy constraints complicate the problem
— Do they over-constrain the problem?

— Under what assumptions can the achievable utilization be
determined? How do changes in policy affect achievable
utilization? Do elastic constraints rather than hard
constraints significantly improve utilization?

* In all of this
— What can we prove?

— View as an optimization problem; use results from
operations research, others

17



Jaint Lab@ e
O\ '\ for Petascale Computation .

Summary

* Opportunities to impact running applications at scale

— Looking for Poisson solvers, topology mappers, communication
schedulers

— Looking for applications needing SpMV on GPU, alternative CG
(nonblocking)

 New challenge: a more effective, mathematical basis for
effective job scheduling

* Need a “top 10” list of challenging numerical problems at
scale — what’s yours?

* Always looking for true big data problems that require 10us
access to 1PB or more of data

18



"Q

»

4"‘ ]dlnt La@" “ SRR
e\ \; mputation .

\ Peta' cale Co

>

A

ACM Special Interest Group on High Performance Computing

19



