
Shared memory parallel 
algorithms in Scotch 6

François Pellegrini

EQUIPE PROJET
BACCHUS
Bordeaux

Sud-Ouest 29/05/2012
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• Context

• Why shared-memory parallelism in Scotch ?

• How to implement it

• Next steps



Context



The Scotch project

• Toolbox of graph partitioning, static mapping and 
clustering methods

• Sequential Scotch library
• Graph and mesh partitioning
• Static mapping (edge dilation)
• Graph and mesh reordering
• Graph repartitioning and remapping [v6.0]

• Parallel PT-Scotch library

• Graph partitioning (edge)
• Static mapping (edge dilation) [v6.1]
• Graph reordering
• Graph repartitioning and remapping [v6.1]



Multilevel framework

• Each partitioning is computed using a multilevel framework
• Successive coarsenings by quotienting (matching)
• Initial partitioning of the smallest graph
• Prolongation of the result with local refinement



Static mapping

• • Compute a mapping of V(S) and E(S) of source graph S 
to V(T) and E(T) of target architecture graph T, 
respectively

• Communication cost function accounts for distance

S

T

• Static mapping features are 
present in the sequential 
Scotch library since its 
inception
• Now in PT-Scotch v6

– PhD of Sébastien 
Fourestier



Parallelism in Scotch v5 (1)

• Distributed-memory parallelism in PT-Scotch only
• Only very limited use of shared-memory threads for 

recursive bipartitioning

• Yet we wanted to move to direct k-way partitioning
– Recursive bipartitioning useful only for sparse 

matrix ordering by nested dissection



Parallelism in Scotch v5 (2)

• The bulk of the work is performed during the coarsening 
and the uncoarsening phases
• Not strictly uncoarsening but local optimization



Parallel static mapping

1

2

4

3

• Recursive bi-mapping won't do in parallel
• All subgraphs at some level are supposed to be processed 

simultaneously for parallel efficiency

• Yet, ignoring decisions in neighboring subgraphs can lead 
to “twists”

• Sequential processing only!



Parallel dynamic remapping
• Bias cut cost function with fictitious edges [Devine et al.]

• Take advantage of the k-way multilevel framework
• Initial mapping is computed sequentially (no twists !)

• Take dilation into account during k-way refinement

• Sequential initial task may become too large some day



Why shared-memory parallelism ?



Reasons for shared-memory parallelism

• For the “sequential” version :
• It is too bad not to take advantage of multi-core 

processors on “sequential” computers and 
workstations

– Users don't want to meddle with new interfaces and 
third-party libraries they do not know

• For the parallel version :

• It is too bad to resort only to distributed-memory 
parallelism when parallel architectures possess 
shared-memory nodes

• Critical for exascale-class machines



How to proceed ?

• Three criteria to consider :
• Locality, locality, locality !

• We are already bad at that :

• Our op/byte rate is low
• Initial graph data may be randomly distributed



How to implement it



Basic blocks

• Use of two (hopefully common) technologies :
• POSIX Pthreads
• Atomic built-ins

– __sync_lock_test_and_set () and its friends...
• OpenMP is cool, but sometimes our algorithms require 

fine synchronization and complex primitives

• E.g. MPI-like reduction operations, scan, etc.
• We may lose some cycles when launching threads 

wrt. OpenMP, though



First experiments in the sequential realm

• We started with the sequential coarsening algorithms :
• Matching
• Graph coarsening
• Diffusion-based local optimization

• Implementation already available in Scotch 6.0.0

• 37% overall improvement in run time on 8 threads



And in the parallel realm ?

• When computing an initial partitioning, data can be 
distributed arbitrarily
• We already knew that for the sequential case

– Some works on GPU algorithms [Fagginger Auer]
• Matching algorithms are likely to be here just to 

compete to fill mating request buffers...
• Coarsened graph building routines may behave better

– Yet not much shared-memory locality to expect
• Local optimization algorithms are expected to be 

scalable, though
• The situation should improve for dynamic repartitioning



(Not so) trivial aspects



Better handling of threading issues

• Integrate the « hwloc » library
• Library designed within the RUNTIME Inria Project-

Team
• Will allow us to handle thread locality issues in a 

platform-independent way
• First third-party library in Scotch ever

– Its use would be parametrized, though
– We already do this for the Linux threads that we 

added in Scotch 6.0
• Provide threading on Windows

• Compatibility library provided by Samuel Thibault
• All of the above in Scotch v6.1



How not to change the interface... (1)

• The Scotch API routines handle opaque SCOTCH_Graph 
and SCOTCH_Dgraph objects only
• No additional « options » structure passed, that could 

hold threading information
• Such an optional argument would have been irrelevant for 

most publicized API routines
• Graph coarsening, graph induction, graph coloring, 

etc...
• Yet, we want these algorithms to be run in parallel



How not to change the interface... (2)

• Handling of multi-threading cannot be performed in the 
strategy string
• Because it also concerns the aforementioned routines
• We must provide a homogeneous mechanism

• Handling of multi-threading should not be attached to the 
graph structures
• Because several algorithms can be applied in parallel 

to the same graph structure
• We don't want to change the interface !



How not to change the interface... (3)

• We plan to create a SCOTCH_Context opaque data 
structure, that will :
• Refer internally to the SCOTCH_Graph and 

SCOTCH_Dgraph data structures
• Hold optional data such as the number of threads

• Scotch API routines will :
• Still accept SCOTCH_Graph's and 

SCOTCH_Dgraph's when default behavior is 
expected

– Use of all threads available to the calling thread
• Accept SCOTCH_Context's when specific behavior is 

expected



Next steps



In the context of the JLPC

• Seeking early users for the parallel repartitioning (and 
remapping !) features of the upcoming v6.1

• Sanjay's group on Charm++

• Other volunteers ?



Thank you for your attention !
Any questions ?

http://scotch.gforge.inria.fr/
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