
Shared memory parallel 
algorithms in Scotch 6

François Pellegrini

EQUIPE PROJET
BACCHUS
Bordeaux

Sud-Ouest 29/05/2012



Outline of the talk

• Context

• Why shared-memory parallelism in Scotch ?

• How to implement it

• Next steps



Context



The Scotch project

• Toolbox of graph partitioning, static mapping and 
clustering methods

• Sequential Scotch library
• Graph and mesh partitioning
• Static mapping (edge dilation)
• Graph and mesh reordering
• Graph repartitioning and remapping [v6.0]

• Parallel PT-Scotch library

• Graph partitioning (edge)
• Static mapping (edge dilation) [v6.1]
• Graph reordering
• Graph repartitioning and remapping [v6.1]



Multilevel framework

• Each partitioning is computed using a multilevel framework
• Successive coarsenings by quotienting (matching)
• Initial partitioning of the smallest graph
• Prolongation of the result with local refinement



Static mapping

• • Compute a mapping of V(S) and E(S) of source graph S 
to V(T) and E(T) of target architecture graph T, 
respectively

• Communication cost function accounts for distance

S

T

• Static mapping features are 
present in the sequential 
Scotch library since its 
inception
• Now in PT-Scotch v6

– PhD of Sébastien 
Fourestier



Parallelism in Scotch v5 (1)

• Distributed-memory parallelism in PT-Scotch only
• Only very limited use of shared-memory threads for 

recursive bipartitioning

• Yet we wanted to move to direct k-way partitioning
– Recursive bipartitioning useful only for sparse 

matrix ordering by nested dissection



Parallelism in Scotch v5 (2)

• The bulk of the work is performed during the coarsening 
and the uncoarsening phases
• Not strictly uncoarsening but local optimization



Parallel static mapping

1

2

4

3

• Recursive bi-mapping won't do in parallel
• All subgraphs at some level are supposed to be processed 

simultaneously for parallel efficiency

• Yet, ignoring decisions in neighboring subgraphs can lead 
to “twists”

• Sequential processing only!



Parallel dynamic remapping
• Bias cut cost function with fictitious edges [Devine et al.]

• Take advantage of the k-way multilevel framework
• Initial mapping is computed sequentially (no twists !)

• Take dilation into account during k-way refinement

• Sequential initial task may become too large some day



Why shared-memory parallelism ?



Reasons for shared-memory parallelism

• For the “sequential” version :
• It is too bad not to take advantage of multi-core 

processors on “sequential” computers and 
workstations

– Users don't want to meddle with new interfaces and 
third-party libraries they do not know

• For the parallel version :

• It is too bad to resort only to distributed-memory 
parallelism when parallel architectures possess 
shared-memory nodes

• Critical for exascale-class machines



How to proceed ?

• Three criteria to consider :
• Locality, locality, locality !

• We are already bad at that :

• Our op/byte rate is low
• Initial graph data may be randomly distributed



How to implement it



Basic blocks

• Use of two (hopefully common) technologies :
• POSIX Pthreads
• Atomic built-ins

– __sync_lock_test_and_set () and its friends...
• OpenMP is cool, but sometimes our algorithms require 

fine synchronization and complex primitives

• E.g. MPI-like reduction operations, scan, etc.
• We may lose some cycles when launching threads 

wrt. OpenMP, though



First experiments in the sequential realm

• We started with the sequential coarsening algorithms :
• Matching
• Graph coarsening
• Diffusion-based local optimization

• Implementation already available in Scotch 6.0.0

• 37% overall improvement in run time on 8 threads



And in the parallel realm ?

• When computing an initial partitioning, data can be 
distributed arbitrarily
• We already knew that for the sequential case

– Some works on GPU algorithms [Fagginger Auer]
• Matching algorithms are likely to be here just to 

compete to fill mating request buffers...
• Coarsened graph building routines may behave better

– Yet not much shared-memory locality to expect
• Local optimization algorithms are expected to be 

scalable, though
• The situation should improve for dynamic repartitioning



(Not so) trivial aspects



Better handling of threading issues

• Integrate the « hwloc » library
• Library designed within the RUNTIME Inria Project-

Team
• Will allow us to handle thread locality issues in a 

platform-independent way
• First third-party library in Scotch ever

– Its use would be parametrized, though
– We already do this for the Linux threads that we 

added in Scotch 6.0
• Provide threading on Windows

• Compatibility library provided by Samuel Thibault
• All of the above in Scotch v6.1



How not to change the interface... (1)

• The Scotch API routines handle opaque SCOTCH_Graph 
and SCOTCH_Dgraph objects only
• No additional « options » structure passed, that could 

hold threading information
• Such an optional argument would have been irrelevant for 

most publicized API routines
• Graph coarsening, graph induction, graph coloring, 

etc...
• Yet, we want these algorithms to be run in parallel



How not to change the interface... (2)

• Handling of multi-threading cannot be performed in the 
strategy string
• Because it also concerns the aforementioned routines
• We must provide a homogeneous mechanism

• Handling of multi-threading should not be attached to the 
graph structures
• Because several algorithms can be applied in parallel 

to the same graph structure
• We don't want to change the interface !



How not to change the interface... (3)

• We plan to create a SCOTCH_Context opaque data 
structure, that will :
• Refer internally to the SCOTCH_Graph and 

SCOTCH_Dgraph data structures
• Hold optional data such as the number of threads

• Scotch API routines will :
• Still accept SCOTCH_Graph's and 

SCOTCH_Dgraph's when default behavior is 
expected

– Use of all threads available to the calling thread
• Accept SCOTCH_Context's when specific behavior is 

expected



Next steps



In the context of the JLPC

• Seeking early users for the parallel repartitioning (and 
remapping !) features of the upcoming v6.1

• Sanjay's group on Charm++

• Other volunteers ?



Thank you for your attention !
Any questions ?

http://scotch.gforge.inria.fr/


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

