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History

1987 MacFem/PCFem les ancêtres (O. Pironneau en Pascal) payant.

1992 FreeFem réécriture de C++ (P1,P0 un maillage) O. Pironneau, D. Bernardi, F.
Hecht , C. Prudhomme (adaptation Maillage, bamg).

1996 FreeFem+ réécriture de C++ (P1,P0 plusieurs maillages) O. Pironneau, D.
Bernardi, F. Hecht (algèbre de fonction).

1998 FreeFem++ réécriture avec autre noyau élément fini, et un autre langage
utilisateur ; F. Hecht, O. Pironneau, K.Ohtsuka.

1999 FreeFem 3d (S. Del Pino) , Une première version de freefem en 3d avec des
méthodes de domaine fictif.

2008 FreeFem++ v3 réécriture du noyau élément fini pour prendre en compte les cas
multidimensionnels : 1d,2d,3d...
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For who, for what !

For what
1 R&D
2 Academic Research ,
3 Teaching of FEM, PDE, Weak form and variational form
4 Algorithmes prototyping
5 Numerical experimentation
6 Scientific computing and Parallel computing

For who : the researcher, engineer, professor, student...

The mailing list mailto:Freefemppljll.math.upmc.fr with 414 members
with a flux of 5-20 messages per day.

More than 2000 true Users ( more than 100 download / month)
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Main characteristics I/II (2D)(3D)

Wide range of finite elements : continuous P1,P2 elements, discontinuous P0, P1,
RT0,RT1,BDM1, elements ,Edge element, vectorial element, mini-element, ...

Automatic interpolation of data from a mesh to an other one ( with matrix
construction if need), so a finite element function is view as a function of (x, y, z)
or as an array.
LU, Cholesky, Crout, CG, GMRES, UMFPack, SuperLU, MUMPS, HIPS ,
SUPERLU_DIST, PASTIX. ... sparse linear solver ; eigenvalue and eigenvector
computation with ARPACK.
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Main characteristics II/II (2D)(3D)

Automatic mesh generator, based on the Delaunay-Voronoï algorithm. (2d,3d
(tetgen) )
Mesh adaptation based on metric, possibly anisotropic (only in 2d), with optional
automatic computation of the metric from the Hessian of a solution. (2d,3d).
Dynamic linking to add plugin.
Full MPI interface
Nonlinear Optimisation tools : CG, Ipopt, NLOpt, stochastic
Wide range of examples : Navier-Stokes 3d, elasticity 3d, fluid structure, eigenvalue problem,

Schwarz’ domain decomposition algorithm, residual error indicator ...
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The C++ kernel / Dehli, (1992 ) (Idea, I)

My early step in C++

typedef double R;

class Cvirt { public: virtual R operator()(R ) const =0;};

class Cfonc : public Cvirt { public:
R (*f)(R); // a function C
R operator()(R x) const { return (*f)(x);}
Cfonc( R (*ff)(R)) : f(ff) {} };

class Coper : public Cvirt { public:
const Cvirt *g, *d; // the 2 functions
R (*op)(R,R); // l’opération
R operator()(R x) const { return (*op)((*g)(x),(*d)(x));}
Coper( R (*opp)(R,R), const Cvirt *gg, const Cvirt *dd):op(opp),g(gg),d(dd){}
~Coper(){delete g,delete d;} };

static R Add(R a,R b) {return a+b;}
static R Sub(R a,R b) {return a-b;}
static R Mul(R a,R b) {return a*b;}
static R Div(R a,R b) {return a/b;}
static R Pow(R a,R b) {return pow(a,b);}
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How to code differential operator (Idea, II)

A differential expression on in a PDE problem is like

f ∗ [ui|∂xui|∂yui| . . .] ∗ [vj |∂xvj |∂yvi| . . .]

where [f, |g, . . .] mean f or g, or . . ., and where the unknown part is
[ui|∂xui|∂yui| . . .] ≡ [(0, i)|(1, i)|(2, i)| . . .] is a pair of i′ × i, if we do the same of the
test part, the differential expression is a formally sum of :∑

k

fk × (i′k, ik, j
′
k, jk)

So we can easily code this syntax :

varf a(u,v) = int2d(Th)(Grad(u)’*Grad(v)) -int2d(Th)(f*v)
+on(1,u=0);

matrix A=a(Vh,Vh,solver=UMFPACK);
real[int] b=a(0,Vh);
u[]=A^-1 * b;
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Laplace equation, weak form

Let a domain Ω with a partition of ∂Ω in Γ2,Γe.
Find u a solution in such that :

−∆u = 1 in Ω, u = 2 on Γ2,
∂u

∂~n
= 0 on Γe (1)

Denote Vg = {v ∈ H1(Ω)/v|Γ2
= g} .

The Basic variational formulation with is : find u ∈ V2(Ω) , such that∫
Ω
∇u.∇v =

∫
Ω

1v+

∫
Γ

∂u

∂n
v, ∀v ∈ V0(Ω) (2)

The finite element method is just : replace Vg with a finite element space, and the
FreeFem++ code :
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Laplace equation in FreeFem++

The finite element method is just : replace Vg with a finite element space, and the
FreeFem++ code :

mesh3 Th("fish3d.msh");// read a mesh 3d
fespace Vh(Th,P1); // define the P1 EF space

Vh u,v;// set test and unknow FE function in Vh.
macro Grad(u) [dx(u),dy(u),dz(u)] //EOM Grad def
solve laplace(u,v,solver=CG) =

int3d(Th)( Grad(u)’*Grad(v) )
- int3d(Th) ( 1*v)
+ on(2,u=2); // int on γ2

plot(u,fill=1,wait=1,value=0,wait=1);

Run:fish.edp Run:fish3d.edp
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A first way to break complexity

Idea :
a(u, v) =

∫
Ω
∇u.∇v

take an equi-partition of Ω in Ωi for i = 0 to Np − 1 the number of processor.
then

a(u, v) =

Np−1∑
i=0

∫
Ωi

∇u.∇v
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A first way to break complexity

1 Build matrix in parallel by assembling par region remark with the change function you
change the region numbering to build region.

real c = mpisize/real(Th.nt);
Th=change(Th,fregion= min(mpisize-1,int(nuTriangle*c)));

2 Assemble the full matrix
varf vlaplace(uh,vh) = // definition de problem

int3d(Th,mpirank)( uh*vh+ dt*Grad(uh)’*grad(vh) )
+ int3d(Th,mpirank)( dt*vh*f) + on(1,uh=g);

matrix A,Ai = vlaplace(Vh,Vh,tgv=ttgv);
mpiAllReduce(Ai,A,mpiCommWorld,mpiSUM); // assemble in //

3 Solve the linear using a good parallel solver (MUMPS)
load "MUMPS_FreeFem"
uh[] = A^-1*b; // resolution

Run:Heat3d.edp Run:NSCaraCyl-100-mpi.edp
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Poisson equation with Schwarz method

To solve the following Poisson problem on domain Ω with boundary Γ in L2(Ω) :

−∆u = f, in Ω, and u = g on Γ,

where f ∈ L2(Ω) and g ∈ H 1
2 (Γ) are two given functions.

Let introduce (πi)i=1,..,Np
a positive regular partition of the unity of Ω, q-e-d :

πi ∈ C0(Ω) : πi ≥ 0 and
Np∑
i=1

πi = 1.

Denote Ωi the sub domain which is the support of πi function and also denote Γi the
boundary of Ωi.
The parallel Schwarz method is Let ` = 0 the iterator and a initial guest u0 respecting the
boundary condition (i.e. u0

|Γ = g).

∀i = 1.., Np : −∆u`i = f, in Ωi, and u`i = u` on Γi (3)

u`+1 =
∑Np

i=1 πiu
`
i (4)
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Some Remark

We never use finite element space associated to the full domain Ω because it to expensive. So
we use on each domain i we defined Ji = {j ∈ 1, . . . , Np / Ωi ∩ Ωj 6= ∅} and we have

(u`+1)|Ωi
=
∑
j∈Ji

(πju
`
j)|Ωi

(5)

We denote u`h|i the restriction of u`h on Vhi, so the discrete problem on Ωi of problem (3) is
find u`hi ∈ Vhi such that :

∀vhi ∈ V0i :

∫
Ωi

∇vhi.∇u`hi =

∫
Ωi

fvhi,

∀k ∈ NΓi

hi : σk
i (u`hi) = σk

i (u`h|i)

where NΓi

hi is the set of the degree of freedom (Dof) on ∂Ωi and σk
i the Dof of Vhi.
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Transfer Part equation(5)

To compute vi = (πiui)|Ωi
+
∑

j∈Ji
(πjuj)|Ωi

and can be write the freefem++ function
Update with asynchronous send/recv (Otherwise dead lock).
func bool Update(real[int] &ui, real[int] &vi)
{ int n= jpart.n;

for(int j=0;j<njpart;++j) Usend[j][]=sMj[j]*ui;
mpiRequest[int] rq(n*2);
for (int j=0;j<n;++j)

Irecv(processor(jpart[j],comm,rq[j ]), Ri[j][]);
for (int j=0;j<n;++j)

Isend(processor(jpart[j],comm,rq[j+n]), Si[j][]);
for (int j=0;j<n*2;++j)

int k= mpiWaitAny(rq);
vi = Pii*ui; // set to (πiui)|Ωi

// apply the unity local partition .
for(int j=0;j<njpart;++j)

vi += rMj[j]*Vrecv[j][]; // add (πjuj)|Ωi

return true; }
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parallel GMRES

Finally you can easily accelerate the fixe point algorithm by using a parallel GMRES algorithm
after the introduction the following affine Si operator sub domain Ωi.
func real[int] Si(real[int]& U) {
real[int] V(U.n) ; b= onG .* U;
b = onG? b : Bi;
V = Ai^-1*b; // (3)
Update(V,U); // (??)
V -= U; return V; }

Where the parallel MPIGMRES or MPICG algorithm is to solve Aixi = bi, i = 1, .., Np by just
changing the dot product by reduce the local dot product of all process with the following MPI
code :
template<class R> R ReduceSum1(R s,MPI_Comm * comm)
{ R r=0;

MPI_Allreduce( &s, &r, 1 ,MPI_TYPE<R>::TYPE(),
MPI_SUM, *comm );

return r; }
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Coarse grid solver

A simple coarse grid is we solve the problem on the coarse grid :
func bool CoarseSolve(real[int]& V,real[int]& U,

mpiComm& comm)
{

if(AC.n==0 && mpiRank(comm)==0) // first time build
AC = vPbC(VhC,VhC,solver=sparsesolver);

real[int] Uc(Rci.n),Bc(Uc.n);
Uc= Rci*U; // Fine to Coarse
mpiReduce(Uc,Bc,processor(0,comm),mpiSUM);
if(mpiRank(comm)==0)

Uc = AC^-1*Bc; // solve of proc 0
broadcast(processor(0,comm),Uc);

V = Pci*Uc; // Coarse to Fine
}

Limitation : if the initial problem, data have oscillation, you must use homogenization technic
on coarse problem, or use the F. Nataf and co, preconditionner.
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So we finally we get 4 algorithms
1 The basic schwarz algorithm u`+1 = S(u`), where S is one iteration of schwarz process.
2 Use the GMRES to find u solution of the linear system Su− u = 0.
3 Use the GMRES to solve parallel problem Aiui = bi , i = 1, . . . , Np, with RAS precondicionneur
4 Use the method with two level precondicionneur RAS and Coarse.

On the SGI UV 100 of the lab :
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A Parallel Numerical experiment on laptop

We consider first example in an academic situation to solve Poisson Problem on the
cube Ω =]0, 1[3

−∆u = 1, in Ω; u = 0, on ∂Ω. (6)

With a cartesian meshes Thn of Ω with 6n3 tetrahedron, the coarse mesh is Th∗m, and
m is a divisor of n.
We do the validation of the algorithm on a Laptop Intel Core i7 with 4 core at 1.8 Ghz
with 4Go of RAM DDR3 at 1067 Mhz,

Run:DDM-Schwarz-Lap-2dd.edp Run:DDM-Schwarz-Lame-2d.edp
Run:DDM-Schwarz-Lame-3d.edp Run:DDM-Schwarz-Stokes-2d.edp
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Newton’s Method

To solve F (u) = 0 the Newton’s algorithm is
1 u0 a initial guest
2 do

find wn solution of DF (un)wn = F (un)
un+1 = un − wn

if( ||wn|| < ε) break ;
For Navier Stokes problem the algorithm is : ∀v, q,

F (u, p) =

∫
Ω

(u.∇)u.v + ν∇u : ∇v − q∇.u− p∇.v +BC

DF (u, p)(w,wp) =

∫
Ω

(w.∇)u.v + (u.∇)w.v

+

∫
Ω
ν∇w : ∇v − q∇.w − wp∇.v +BC0

Run:cavityNewtow.edp Run:NSNewtonCyl-100-mpi.edp
Run:Hyper-Elasticity-2d.edp
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Metric / unit Mesh

In Euclidean geometry the length |γ| of a curve γ of Rd parametrized by γ(t)t=0..1 is

|γ| =
∫ 1

0

√
< γ′(t), γ′(t) >dt

We introduce the metricM(x) as a field of d× d symmetric positive definite matrices,
and the length ` of Γ w.r.tM is :

` =

∫ 1

0

√
< γ′(t),M(γ(t))γ′(t) >dt

The key-idea is to construct a mesh where the lengths of the edges are close to 1
accordingly toM.
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The mains IDEA for mesh generation

The difficulty is to find a tradeoff between the error estimate and the mesh
generation, because this two work are strongly different.
To do that, we propose way based on a metricM and unit mesh w.r.tM
The metric is a way to control the mesh size.
remark : The class of the mesh which can be created by the metric, is very large.

Idea : Metrix intersection The unit ball BM in a metricM plot the maximum mesh
size on all the direction, is a ellipse. If you we have two unknowns u and v, we just
compute the metricMu andMv , find a metricMuv call intersection with the biggest

ellipse such that : BMuv ⊂ BMu ∩ BMv
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Build of the metric form the solution u

Optimal metric norm for interpolation error (function adaptmesh in freefem++) for P1

continuous Lagrange finite element

L∞ :M =
1

ε
|∇∇u| = 1

ε
|H| where H = ∇∇u

Lp :M = 1
ε |det(H)|

1
2p+2 |H| (result of F. Alauzet, A. Dervieux)

In Norm W 1,p, the optimal metricM` for the P` Lagrange finite element, Optimal is given by
(with only acute triangle) (thank J-M. Mirebeau)

M`,p =
1

ε
(detM`)

1
`p+2 M`

and (see MetricPk plugin and function )

for P1 :M1 = H2 (sub optimal with acute triangle take H)

for P2 :M2 = 3

√(
a b
b c

)2

+

(
b c
c a

)2

with

D(3)u(x, y) = (ax3 + 3bx2y + 3cxy2 + dy3)/3!,
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Example of adaptation process

Find optimal mesh in norm L∞ to represent :

u = (10 ∗ x3 + y3) + atan2(0.001, (sin(5 ∗ y)− 2 ∗ x))

v = (10 ∗ y3 + x3) + atan2(0.01, (sin(5 ∗ x)− 2 ∗ y)).

Enter ? for help Enter ? for help Enter ? for help

Run:Adapt-uv.edp Run:CornerLap.edp Run:Laplace-Adapt-3d.edp
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Ipopt

The IPOPT optimizer in a FreeFem++ script is done with the IPOPT function
included in the ff-Ipopt dynamic library.
IPOPT is designed to solve constrained minimization problem in the form :

find x0 = argmin
x∈Rn

f(x)

s.t.

{
∀i ≤ n, xlb

i ≤ xi ≤ xub
i (simple bounds)

∀i ≤ m, clb
i ≤ ci(x) ≤ cub

i (constraints functions)

Where ub and lb stand for "upper bound" and "lower bound". If for some
i, 1 ≤ i ≤ m we have clb

i = cub
i , it means that ci is an equality constraint, and an

inequality one if clb
i < cub

i .
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Bose Einstein Condensate

Just a direct use of Ipopt interface (2 day of works)
The problem is find a complex field u on domain D such that :

u = argmin
||u||=1

∫
D

1

2
|∇u|2 + Vtrap|u|2 +

g

2
|u|4 − Ωiu

((−y
x

)
.∇
)
u

to code that in FreeFem++
use

Ipopt interface ( https://projects.coin-or.org/Ipopt)
Adaptation de maillage

Run:BEC.edp
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Solid to Liquid and Natural Convection

The starting point is almost the Orange Problem is describe in web page http://www.
ljll.math.upmc.fr/~hecht/ftp/ff++days/2011/Orange-problem.pdf.
The coupling of natural convection modeled by the Boussinesq approximation and liquid to
solid phase change in Ω =]0, 1[2, No slip condition for the fluid are applied at the boundary and
adiabatic condition on upper and lower boundary and given temperature θr (resp θl) at the
right and left boundaries.
The model is : find the field : the velocity u = (u1, u2), the pressure p and temperature θ :

u given in Ωs

∂tu + (u∇)u +∇.µ∇u +∇p = −cTe2 in Ωf

∇.u = 0 in Ωf

∂tθ + (u∇)θ +∇.kT∇θ = ∂tS(T ) in Ω

(7)

Where Ωf is the fluid domain and the solid domain is Ωs = Ω \ Ωf .
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Solid to Liquid and Natural Convection

The enthalpy of the change of phase is given by the function S ; µ is the relative
viscosity, kT the thermal diffusivity.
In Ωf = {x ∈ Ω; θ > θf}, with θm the melting temperature the solid has melt.
We modeled, the solid phase as a fluid with huge viscosity, so :

µ =

{
θ < θf ∼ 106

θ ≥ θm ∼ 1
Re

,

The Stefan enthalpy Sc with defined by Sc(θ) = H(θ)/Sth where Sthe is the stefan
number, and H is the Heaviside function with use the following smooth the enthalpy :

S(θ) =
tanh(50(θ − θm)))

2Ste
.
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The true device

12 Etude MCPAM °52C 
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the Algorithm

We apply a fixed point algorithm for the phase change part (the domain Ωf is fixed at
each iteration) and a full no-linear Euler implicit scheme with a fixed domain for the
rest. We use a Newton method to solve the non-linearity.

if we don’t make mesh adaptation, the Newton method do not converge
if we use explicit method diverge too,
if we implicit the dependance in Ωs the method also diverge.

This is a really difficult problem.
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the Algorithm, implementation

The finite element space to approximate u1, u2, p, θ is defined by

fespace Wh(Th,[P2,P2,P1,P1]);

We do mesh adaptation a each time step, with the following code :

Ph ph = S(T), pph=S(Tp);
Th= adaptmesh(Th,T,Tp,ph,pph,[u1,u2],err=errh,

hmax=hmax,hmin=hmax/100,ratio = 1.2);

This mean, we adapt with all variable plus the 2 melting phase a time n+ 1 and n and
we smooth the metric with a ratio of 1.2 to account for the movement of the melting
front.
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The Newton loop

the fixed point are implemented as follows

real err=1e100,errp ;
for(int kk=0;kk<2;++kk)//2 step of fixe point on Ωs

{ nu = nuT; // recompute the viscosity in Ωs,Ωf

for(int niter=0;niter<20; ++niter)//Newton loop
{ BoussinesqNL;

err = u1w[].linfty;
cout << niter << " err NL " << err <<endl;
u1[] -= u1w[];
if(err < tolNewton) break; }// convergence

}
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The linearized problem

problem BoussinesqNL([u1w,u2w,pw,Tw],[v1,v2,q,TT])
= int2d(Th) ( [u1w,u2w,Tw]’*[v1,v2,TT]*cdt

+ UgradV(u1,u2,u1w,u2w,Tw)’ * [v1,v2,TT]
+ UgradV(u1w,u2w,u1,u2,T)’ * [v1,v2,TT]
+ ( Grad(u1w,u2w)’*Grad(v1,v2)) * nu
+ ( Grad(u1,u2)’*Grad(v1,v2)) * dnu* Tw
+ cmT*Tw*v2 + grad(Tw)’*grad(TT)*kT
- div(u1w,u2w)*q -div(v1,v2)*pw - eps*pw*q
+ dS(T)*Tw*TT*cdt )

- int2d(Th)(
[u1,u2,T]’*[v1,v2,TT]*cdt
+ UgradV(u1,u2,u1,u2,T)’ * [v1,v2,TT]
+ ( Grad(u1,u2)’*Grad(v1,v2)) * nu
+ cmT*T*v2 - eps*p*q + grad(T)’*grad(TT)*kT
- div(u1,u2)*q -div(v1,v2)*p
+ S(T)*TT*cdt - [u1p,u2p,Tp]’*[v1,v2,TT]*cdt
- S(Tp)*cdt*TT)

+ on(1,2,3,4, u1w=0,u2w=0)+on(2,Tw=0)+on(4,Tw=0);
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The parameters of the computation

take case 2 from
Shimin Wang, Amir Faghri, and Theodore L. Bergman. A comprehensive numerical
model for melting with natural convection. International Journal of Heat and Mass
Transfer, January 2010.

θm = 0, Re = 1, Ste = 0.045, Pr = 56.2, Ra = 3.27 105 , θl = 1, θr = −0.1 so in this
case cmT = cT = −Ra/Pr , kT = kT = 1/Pr, eps = 10−6, time step δt = 10−1,
cdt = 1/δt, at time t = 80 and we get a good agreement with the article.
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Variables and a-dimension

The fusion temperature will be denoted by Tf . Using a lengthscale Lref = H and a liquid
reference state (ρref , Vref , Tref ), we can define the following scaling for the space, velocity,
temperature and time variables :

~x =
~X

Lref
, ~u =

~U

Vref
, θ =

T − Tref
Th − Tc

, t =
τ

tref
, tref = Lref/Vref .

fB(θ) =
Ra
PrRe2

θ, The buoyancy force (8)

where the Reynolds, Prandtl and Rayleigh numbers, are defined as :

Re =
ρrefVrefLref

µl
, Pr =

νl
αl
, Ra =

gβL3
ref (Th − Tc)
νlαl

, (9)

with µ denoting the viscosity, ν the kinematic viscosity, α the thermal diffusivity, β the
thermal expansion coefficient and g the gravitational acceleration.
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Phase change with Natural Convection

So now, a real problem, get the physical parameter of the real experiment.
Run:Orange-Newton.edp
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Density of water

Pure water exhibits a nonlinear density variation for T < 10.2 ◦C with a maximum at
Tm = 4.0293 ◦C. We use below the following density-temperature relationship :

ρ(T ) = ρm (1− w |T − Tm|q) , (10)

with ρm = 999.972 [kg/m3], w = 9.2793 · 10−6 [(◦C)−q], and q = 1.894816. Choosing
the fusion temperature Tf = 0 ◦C as reference, the bouyancy term
fB = g(ρref − ρ)/ρref appearing becomes after scaling :

fB(θ) =
Ra
PrRe2

1

β(Th − Tc)
ρ(θf )− ρ(θ)

ρ(θf )
, (11)

where β = (1/ρm) (dρ/dT ) is the thermal expansion coefficient with the value
β = 6.91 · 10−5 [(K)−1]. Note that (11) compared to the classical linear form (8) non
only introduces a new nonlinear term, but also the coefficient in front of this term is
very large, since proportional to Ra/(β(Th − Tc)).
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Natural convection of water to 10◦ to 0◦
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θ = θfθ = θh

∂θ/∂n=0
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Pr = 6.99

Natural convection of water

Natural convection of water in a differentially heated cavity. Problem definition and
streamlines of the steady flow.
Movie:flow Movie:mesh Movie:flows Region
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Freezing of pure water

Freezing of pure water : Configuration at (physical time) τ = 2340[s] : (a) experimental
image ; the thick red line represents the solid-liquid interface computed with the present
method (b)
Movie:flow Movie:mesh Movie:flows Region
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Freezing of pure water
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Freezing of pure water. Computed configuration at (physical time) τ = 2340[s] : (a)
finite-element mesh refined along the solid-liquid interface (T = 0 ◦C) and also along
the line of maximum water density (T = 4 ◦C) (b) temperature iso-lines.
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Conclusion/Future

Freefem++ v3 is
very good tool to solve non standard PDE in 2D/3D
to try new domain decomposition domain algorithm

The the future we try to do :
Build more graphic with VTK, paraview , ... (in progress)
Add Finite volume facility for hyperbolic PDE (just begin C.F. FreeVol Projet)
3d anisotrope mesh adaptation
automate the parallel tool

Thank for you attention.
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