Composing multiple StarPU applications
over heterogeneous machines:
a supervised approach

Andra Hugo

With Abdou Guermouche, Pierre-André Wacrenier, Raymo nd Namyst

Inria, LaBRI, University of Bordeaux
RUNTIME
INRIA Group
INRIA Bordeaux Sud-Ouest

The increasing role of runtime systems

Code reusabillity

« Many HPC applications rely on
specific parallel libraries
- Linear algebra, FFT, Stencils

IntelTBB

Harmony StarSs
Anthil Gk OpenMP

KAAPI StarPU

DAGUE Charm++
Qilin

« Efficient implementations sitting on
top of dynamic runtime systems
- To deal with hybrid, multicore
complex hardware
* E.g. MKL/OpenMP,
MAGMA/StarPU
- To avoid reinventing the wheel!

 Some application may benefit from
relying on multiple libraries
- Potentially using different
underlying runtime systems...

T —

The increasing role of runtime systems
Code reusabillity

« Many HPC applications rely on
specific parallel libraries
- Linear algebra, FFT, Stencils

IntelTBB

Harmony StarSs
Anthil Gk OpenMP

KAAPI StarPU

DAGUE Charm++
Qilin

« Efficient implementations sitting on
top of dynamic runtime systems
- To deal with hybrid, multicore
complex hardware
* E.g. MKL/OpenMP,
MAGMA/StarPU
- To avoid reinventing the wheel!

 Some application may benefit from
relying on multiple libraries . And the performance ’
—~ of the application Py

- Potentially using different
underlying runtime systems...

I@W_

Struggle for resources

Interferences between parallel libraries

« Parallel libraries typically allocate
and bind one thread per core
Problems:

« Resource over-subscription

e Resource under-subscription
Solutions:

« Stand-alone allocation

 Hand-made allocation

activate

pansl
update

assemble

o] =] [=] [=] [=]

clean

 Examples:
- Sparse direct solvers
- Code coupling (multi-physics,
multi-scale)
- Etc...

cPUL) cPU2 J) cpu3) (crua Gpu |

Example: gr_mumps
I&szu&,-

Struggle for resources

Interferences between parallel libraries

« Parallel libraries typically allocate
and bind one thread per core
Problems:

« Resource over-subscription

e Resource under-subscription
Solutions:

« Stand-alone allocation

 Hand-made allocation

o] =] [=] [=] [=]

 Examples:
- Sparse direct solvers
- Code coupling (multi-physics,
multi-scale)
- Etc...

cPUL) cPU2 J) cpu3) (crua Gpu |

=> Composability problem Example: gr_mumps
Iéw_

Our approach: Scheduling Contexts

Toward code composability
Push Push

B

Isolate concurrent parallel codes
Similar to lightweight virtual machines

sl

EEEEE

CPU GPU
workers workers

Our approach: Scheduling Contexts

Toward code composability
Push Push

» [solate concurrent parallel codes
« Similar to lightweight virtual machines

o Contexts may expand and shrink
- Hypervised approach
* Resize contexts

. Shre resources e

- Maximize overall throughput s s s s s S
CPU GPU
- Use dynamic feedback both from workers workers

oo o

Tackle the Composabillity problem

 Runtime System to validate our proposal
e Scheduling contexts to isolate parallel codes

 The Hypervisor to (re)size scheduling contexts

T

l&l

ackle the Composability problem

Runtime System to validate our proposal
Scheduling contexts to isolate parallel codes

The Hypervisor to (re)size scheduling contexts

Using StarPU as an experimental platform

A runtime system for *PU architectures

. for studying resource negociation
 The StarPU runtime system ying J

- Dynamically schedule tasks on all -
processing units

e See a pool of heterogeneous
processing units “ —

- Avoid unnecessary data transfers .

between accelerators
e Software VSM for

heterogeneous machines ”

I‘W—-_

Overview of StarPU
Maximizing PU occupancy, minimizing data transfers

* Accept tasks that may have
multiple |rnp.lementat|ons | — parallel
- Potential inter-dependencies Compilers Libraries

HPC Applications

e Leads to a directed acyclic

graph of tasks
» Data-flow approach

cpu
f gpu
spu

(Arw, Br, Cr)

Drivers (CUDA, OpenCL)
CPU GPU MIC

* Open, general purpose
scheduling platform
- Scheduling policies = plugins

Iéw’_

Tasks scheduling
How does it work?

 When a task is submitted, it first goes
Into a pool of “frozen tasks” until all
dependencies are met Push

 Then, the task is “pushed” to the
scheduler

» |dle processing units actively poll for
work (“pop”)

 What happens inside the scheduler is...
up to you!

o RRRL

- mct, work stealing, eager, priority CPU GPU

workers workers

I‘;‘“&*_

T

l&l

ackle the Composability problem

Runtime System to validate our proposal
Scheduling contexts to isolate parallel codes

The Hypervisor to (re)size scheduling contexts

Scheduling Contexts in StarPU

Extension of StarPU

 “Virtual” StarPU machines
- Feature their own scheduler

- Minimize interferences
- Enforce data locality

StarPU
 Allocation of resources | Memory _Scheduyling Engine _
nagment Scheduling Contest 1 : chaduling Cantext 2
- Explicit: (DSM) 5 B 8 B

 Programmer’s input

GPU driver ICPU driver

- Supervised:

e Tips on the number of resources
e Tips on the number of flops
- Shared processing units

I‘W—-_

T

l&l

ackle the Composability problem

Runtime System to validate our proposal
Scheduling contexts to isolate parallel codes

The Hypervisor to (re)size scheduling contexts

The Hypervisor

l&l

What if static dimensioning doesn’t work?

ldea:

- Monitors scheduling contexts

- Dynamically resize scheduling
contexts

- Different resizing policies

Optimization criteria: Hypervisor

- Maximize the instant speed of the e
resources/contexts

- Minimize total execution of the
application

The Hypervisor

What if static dimensioning doesn’t work?

 When to trigger resizing?
- The initial configuration deteriorates the performances
- Different metrics:
 Idle resources

* Triggering threshold given by the application
» Easy to find

» Speed of the contexts
» Dependent on the workload of the kernels
» Compute “right” velocity for each context
e Outside the “right” interval => wrong behavior
* Difficult to evaluate

I&“&*_

Experimental evaluation
Platform and Application

9 CPUs (two Intel hexacore
processors, 3 cores devoted to execute
GPU drivers) + 3 GPUs

MAGMA Linear Algebra Library
- StarPU Implementation
- Cholesky Factorization kernel

2 Cholesky factorisations

- 15k x 15k
- 30k x 30k MAGMA — Cholesky Factorization
e Best distribution o Arbitrary distribution
- 1st context (15k x 15k): 9 CPUs - 1st context (15k x 15k): 4 CPUs
- 2nd context (30k x 30k): 3 GPUs - 2nd context (30k x 30k):

5 CPUs + 3 GPUs
oo e

When to resize ?

Iéw’_

Criteria to trigger resizing
|dle resources

* No tasks to pop from a context
=> Avoid starvation B

T

Vary the idle threashold to trigger resize (2 Cholesy factorisations (15k & 30k matrices))

e Small threshold => often 30 — . e
reevaluation of the distribution |-
=> ping pong effect

e Large threshold => seldom s
reevaluation of the distribution

20

Time(s)

5
e Benefits 1000 10000 100000 1e+06 1e+07 1e+08 1e+09 1e+10
e Little input requirements thrseshold
from the application Drawbacks:

. Easy to find a good interval: » To late for a load-balancing problem

1074 - 10"6
e _

How to resize ?

I"'m&—-_

Maximize the throughput
Focus on the present

 Maximize the instant speed of

contexts / Monitor last execution interval
« Don't leave anyone behind

\ Forecast next execution interval

/ (V’LU eW,Veg C, : 'gw,c < tmin: IUJ,C)\

Sw,e

A (vc €C, > Oue= 96)

weWw
min (tmm) subject to | A | Yw € W, Ve € C,xy,c € {0, 1})

(
A (Vw EW, Y sipe= 1)
(

ce

A vwew, > ew,c>0)

cc

b \)

I‘Am_

Maximize the throughput
Focus on the present

 Maximize the instant speed of

contexts /’ Monitor last execution interval
« Don't leave anyone behind

\ Forecast next execution interval

A

1
/ (\:«’w =W ¥e g (), —'gw,c < tmin Iw}c)

A (vc €C, > Oue= 96)

weEW

min (tmm) subject to | A | Yw € W, Ve € C, xw,c € {0, 1})

(
A (Vw EW, Y sipe= 1)
(

ceC

A vwew, > Gw,c>0)

ecC

b \)

I‘W—-_

Maximize the throughput
Focus on the present

 Maximize the instant speed of

contexts / Monitor last execution interval
« Don't leave anyone behind

\ Forecast next execution interval

/ (\:«’w e W Ve e C, L é tmin'mw}c)\
Speed of aworker ina context ==
A (vc €C, > Oue= Bc)

weEW

min (tmm) subject to | A | Yw € W, Ve € C, zw,c € {0, 1})

(
A (Vw EW, Y sipe= 1)
(

ceC

A vwew, > Gw,c>0)

ecC

. \)l

Flops to be executed by aworker in a context
I"“’w—_

Maximize the throughput
Focus on the present

 Maximize the instant speed of

contexts / Monitor last execution interval
« Don't leave anyone behind

\ Forecast next execution interval

/ (\:«"w e W Ve e C, L é tmin'mw,c)\
Speed of aworker ina context ==
A (vc €C, > Oue= Bc)

weEW

min ‘ tmm)) subject to | A (Vw € W,Ve € C,zw,c € {0, 1})
A (Vw e W, Z Tw,e = 1)
ceC
[A (Vw eW, > Gw,c>0> ?

ecC

Flops to be executed by aworker in a context
I"“""-_

Tracing the decision process
Focus on the present

 Both contexts runatthe same [T T T Numbérordebs T
speed e iRENNEE NN AN NRR RN

* Drawbacks: s Sr L
as 5 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -

« Forcethe smallkernelto & ap b .

3 : ; ; : AP0 O SRR NN SUUU UN SO SO SN SO SN UL UOUNE SO SO SN O SO —

run too fast 2 i

« Important penalty on the : e e

-101234567 8 910111213141516171819202122232425

big kernel

* No information about the % ,
future "g :
* No prediction of the 2 ;
performance of resources f

1 1 1 1 1 1 1 1 1
-1 01234567 8 910111213141516171819202122232425
Time(s)

- e

Minimize the execution time
Forecast the future

* Input: the workload of the application (number of flops)

« Compute the number of resources of each type of architecture
needed by each context
- How many GPUs/CPUs ?
- To execute in a minimal amount of time

((‘v’c € C,na,cVa + ng,cvg > th)\

max
1 :
max subject to | A (Z Na,c = na)
tmax CEO
(S /
ceC

I‘Am_

Minimize the execution time
Forecast the future

* Input: the workload of the application (number of flops)

« Compute the number of resources of each type of architecture
needed by each context
- How many GPUs/CPUs ?
- To execute in a minimal amount of time

max (!)subject to| A (Z Na,c = na)
tmaa: CEO

(Zrme=m))
ceC

Minimize the execution time
Forecast the future

* Input: the workload of the application (number of flops)

« Compute the number of resources of each type of architecture
needed by each context
- How many GPUs/CPUs ?
- To execute in a minimal amount of time

1
max subject to | A Z Na,c = Na
tmaa: CEO

N\ Z ng,c = ?‘LB)
\ (CEC Speed of GPUs

Speed of CPUs
I° - ol

Minimize the execution time
Forecast the future

* Input: the workload of the application (number of flops)

« Compute the number of resources of each type of architecture
needed by each context
- How many GPUs/CPUs ?
- To execute in a minimal amount of time

)subject to | A (Z Na,e = na)

A
Speed of CPUs

Tracing the decision process
Forecast the future

o N RRERN T R s —
* Objective: o Lob emess 1o o Numberor @l T -
« Same terminationtime g o[™" T
N O W]
i i o S e A Bt R S S B
« Monitored speed reinserted £ [i
. - T S e N M - -
In the system T O]
I o T T T T B R e e B R St —
0—1 01 2 3 45 6 7 8 9 1011121314151617 18 1920
 Resources attracted by the 10 mete
computations where they 3 2
perform best i 7
s 5
E 4
=
3
2
1.:: ' ' | . ' ' . ' ' ' | 5.000C00 ¢ . '
O— 4 5 6 7 8 9 10111213 14151617 18 19 20

Time(s)

1

When the programmer is a great wizard
History based performance models

 Knowledge of the execution flow of the application
- At least a part of if
- Types of tasks
- Number of tasks of each type

* Previous calibration of the application
- Prediction of the execution time of the tasks
- StarPU system of calibration
- Scheduling policies based on:
e Task completion time estimation
« Data transfer time estimation

I‘W—-_

Minimize the execution time
Forecast the future in detall

* Input: the workload of the application(number of tasks of each type)
« Calibration information => execution time of each type of kernel
* Scheduling policy — independent decisions

/ (Vw € W, Ve e O, Z Tt we dt,w S tmin ifw,c)\

tcTe

A (vc €ECVEET:, Yy Mtw= nt)

weWw

min (tmm) subject to

A (Vw € W,Vec € C, 2w, € {0, 1})
A YV e W, Tw,e = 1
o\ (;:))

I"'Lw_

Minimize the execution time
Forecast the future in detall

* Input: the workload of the application(number of tasks of each type)
« Calibration information => execution time of each type of kernel
* Scheduling policy — independent decisions

Execution time of task t on worker w -

/ (Vw e W, Ve e C, Z nt,w- i R :rw?c)\

tE Tﬂ

A (Vc e C,Vt € T, Z Nt = nt)

weWw

min (tmm) subject to

A (Vw € W,Vec € C, 2w, € {0, 1})
A | VweW, Tw,e = 1
o\ (;))

I"'m&—-_

Minimize the execution time
Forecast the future in detall

* Input: the workload of the application(number of tasks of each type)
« Calibration information => execution time of each type of kernel
* Scheduling policy — independent decisions

Execution time of task t on worker w -

Number oftasks ton worker w <— | (o e wve e € TR < trir)
teT,
A (Vc e C,Vt € T, Z Nt = nt)
min (tmm) subject to

weWw

A (Vw € W,Vec € C, 2w, € {0, 1})
A | VweW, Tw,e = 1
o\ (;))

I"'m&—-_

Minimize the execution time
Forecast the future in detall

* Input: the workload of the application(number of tasks of each type)
« Calibration information => execution time of each type of kernel
* Scheduling policy — independent decisions

Execution time of task t on worker w -

/ (Vw e W, Ve e C, Z Ry @ < tm%n-$w1c)\

tE Tﬂ

A (vc €ECVEET:, Yy Mtw= ?lt)

weWw

A

min @) subject to
Yw € W,Ve € C, Zy,c € {0, 1})

(
e "% /

I&“&*_

Tracing the decision process
Forecast the future

1 1] 1 1] 1 1 1 1 1 I 1 1 I 1 1 I 1 I
A Number of CRPUJs ——
i | Nymber of GPUs —<—

—_
Mo

—_
—
I

* Objective:
e Same termination time

—_
o
!
a7

8.484018

e e —Wmmmnmmmmﬂmmmﬂn—~ ----- bereendee

 Resources attracted by the
type of tasks they execute
best

Number of ressources

i ioazhgsnl

o = N W A~ 003 N 0 O
I

: 1 e | |

([] —_—
CPUS better -1 01234567 8 91011121314151617181920

- Timesy

executing small
Cholesky

« GPUs — better
executing big Cholesky

=}
=]

| b.262098 | |

Number of ressources

;-;;-; i g.UUUUiUU i
L
-1 01 23 4567 8 91011121314151617181920

Time(s)

O = N W A OO ® N 00 ©
I

Conclusion

e Scheduling Contexts allow using multiple parallel libraries
simultaneously
- Currently implemented in StarPU
- A Hypervisor dynamically shrinks / extends contexts
o Contexts may be resized whenever we have:
- Idle resources
- “Significant” differences of velocity between contexts
» Estimated speed vs computed speed
» Acts sooner than idleness based criteria
» Different algorithms to improve the execution of the application
- Maximize its throughput
- Minimize its execution time

Future Work

New metrics to trigger the resizing
- Burden on the application vs precision of the decision?

 New policies to improve the resizing decision
 More intelligent sharing of resources (GPUSs)
« Experiment on real life applications

« Extend scheduling contexts to other parallel environments

e And much more!

I"'w&f_

