
Composing multiple StarPU applications Composing multiple StarPU applications 
over heterogeneous machines: 

a supervised approach

Andra Hugo
With Abdou Guermouche, Pierre-André Wacrenier, Raymo nd Namyst

Inria, LaBRI, University of Bordeaux

RUNTIME
INRIA Group
INRIA Bordeaux Sud-Ouest



The increasing role of runtime systems
Code reusability

• Many HPC applications rely on 
specific parallel libraries
- Linear algebra, FFT, Stencils

• Efficient implementations sitting on 
top of dynamic runtime systems
- To deal with hybrid, multicore 

complex hardware

Cilk OpenMP

IntelTBB

Anthill
Harmony

KAAPI StarPU

StarSs

Runtime - 2

complex hardware
• E.g. MKL/OpenMP, 

MAGMA/StarPU
- To avoid reinventing the wheel!

• Some application may benefit from 
relying on multiple libraries
- Potentially using different 

underlying runtime systems…

DAGuE Charm++
Qilin



The increasing role of runtime systems
Code reusability

• Many HPC applications rely on 
specific parallel libraries
- Linear algebra, FFT, Stencils

• Efficient implementations sitting on 
top of dynamic runtime systems
- To deal with hybrid, multicore 

complex hardware

Cilk OpenMP

IntelTBB

Anthill
Harmony

KAAPI StarPU

StarSs

Runtime - 3

complex hardware
• E.g. MKL/OpenMP, 

MAGMA/StarPU
- To avoid reinventing the wheel!

• Some application may benefit from 
relying on multiple libraries
- Potentially using different 

underlying runtime systems…

DAGuE Charm++
Qilin

And the performance
of the application=>



Struggle for resources
Interferences between parallel libraries

• Parallel libraries typically allocate 
and bind one thread per core
Problems: 

• Resource over-subscription
• Resource under-subscription

Solutions:
• Stand-alone allocation
• Hand-made allocation

Runtime - 4

• Hand-made allocation

• Examples: 
- Sparse direct solvers
- Code coupling (multi-physics,
multi-scale)
- Etc…

CPU 1CPU 1 CPU 2CPU 2 CPU 3CPU 3 CPU 4CPU 4 GPU GPU 

Example: qr_mumps



Struggle for resources
Interferences between parallel libraries

• Parallel libraries typically allocate 
and bind one thread per core
Problems: 

• Resource over-subscription
• Resource under-subscription

Solutions:
• Stand-alone allocation
• Hand-made allocation

Runtime - 5

=> Composability problem
CPU 1CPU 1 CPU 2CPU 2 CPU 3CPU 3 CPU 4CPU 4 GPU GPU 

Example: qr_mumps

• Hand-made allocation

• Examples: 
- Sparse direct solvers
- Code coupling (multi-physics,
multi-scale)
- Etc…



Our approach: Scheduling Contexts
Toward code composability

• Isolate concurrent parallel codes

• Similar to lightweight virtual machines
Context B

Push

Context A

Push

Runtime - 6

CPU
workers

GPU
workers



Our approach: Scheduling Contexts
Toward code composability

• Contexts may expand and shrink

- Hypervised approach

Context B
Push

Context A

Push
• Isolate concurrent parallel codes

• Similar to lightweight virtual machines

Runtime - 7

• Resize contexts

• Share resources

- Maximize overall throughput

- Use dynamic feedback both from 

application and runtime

CPU
workers

GPU
workers

Hypervisor



Tackle the Composability problem

• Runtime System to validate our proposal

• Scheduling contexts to isolate parallel codes

• The Hypervisor to (re)size scheduling contexts 

Runtime - 8



Tackle the Composability problem

• Runtime System to validate our proposal

• Scheduling contexts to isolate parallel codes

• The Hypervisor to (re)size scheduling contexts 

Runtime - 9



Using StarPU as an experimental platform
A runtime system for *PU architectures

for studying resource negociation
• The StarPU runtime system

- Dynamically schedule tasks on all 

processing units

• See a pool of heterogeneous 

processing units

A = A+B

CPU

CPU

CPU

CPU M.GPU

Runtime

- Avoid unnecessary data transfers 

between accelerators

• Software VSM for 

heterogeneous machines

M.

CPU CPU

M.GPU

CPU

CPU

CPU

CPU

M.A

B
B

M.GPU

M.GPU

- 10



Parallel
Compilers

HPC Applications

Parallel 
Libraries

Overview of StarPU
Maximizing PU occupancy, minimizing data transfers

• Accept tasks that may have 

multiple implementations

- Potential inter-dependencies

• Leads to a directed acyclic 

graph of tasks

• Data-flow approach

CPU

StarPU

Drivers (CUDA, OpenCL)

Runtime

• Open, general purpose 

scheduling platform

- Scheduling policies = plugins

GPU MIC

(ARW, BR, CR)

f
cpu
gpu
spu

- 11



Tasks scheduling
How does it work?

• When a task is submitted, it first goes 
into a pool of “frozen tasks” until all 
dependencies are met

• Then, the task is “pushed” to the 
scheduler

• Idle processing units actively poll for 
Scheduler

Push

Runtime

• Idle processing units actively poll for 
work (“pop”)

• What happens inside the scheduler is… 
up to you!

• Examples: 
- mct, work stealing, eager, priority CPU

workers
GPU

workers

Pop Pop

- 12



Tackle the Composability problem

• Runtime System to validate our proposal

• Scheduling contexts to isolate parallel codes

• The Hypervisor to (re)size scheduling contexts 

Runtime - 13



Scheduling Contexts in StarPU
Extension of StarPU

• “Virtual” StarPU machines

- Feature their own scheduler

- Minimize interferences

- Enforce data locality

• Allocation of resources

Runtime - 14

- Explicit:

• Programmer’s input

- Supervised:

• Tips on the number of resources

• Tips on the number of flops

- Shared processing units



Tackle the Composability problem

• Runtime System to validate our proposal

• Scheduling contexts to isolate parallel codes

• The Hypervisor to (re)size scheduling contexts 

Runtime - 15



• Idea:

- Monitors scheduling contexts

- Dynamically resize scheduling 

contexts

- Different resizing policies

The Hypervisor
What if static dimensioning doesn’t work?

Runtime

• Optimization criteria:

- Maximize the instant speed of the 

resources/contexts

- Minimize total execution of the 

application

- 16



• When to trigger resizing?

- The initial configuration deteriorates the performances

- Different metrics: 

• Idle resources
• Triggering threshold given by the application

The Hypervisor
What if static dimensioning doesn’t work?

Runtime

• Easy to find 

• Speed of the contexts
• Dependent on the workload of the kernels

• Compute “right” velocity for each context

• Outside the “right” interval => wrong behavior

• Difficult to evaluate

- 17



Experimental evaluation
Platform and Application

• 9 CPUs (two Intel hexacore
processors, 3 cores devoted to execute 
GPU drivers) + 3 GPUs

• MAGMA Linear Algebra Library
- StarPU Implementation
- Cholesky Factorization kernel

Runtime - 18

• 2 Cholesky factorisations
- 15k x 15k
- 30k x 30k

• Best distribution
- 1st context (15k x 15k): 9 CPUs
- 2nd context (30k x 30k): 3 GPUs

MAGMA – Cholesky Factorization

• Arbitrary distribution
- 1st context (15k x 15k): 4 CPUs
- 2nd context (30k x 30k): 

5 CPUs + 3 GPUs



When to resize ?

Runtime - 19



Criteria to trigger resizing
Idle resources

• No tasks to pop from a context

=> Avoid starvation

• Small threshold  =>  often

reevaluation of the distribution 

=> ping pong effect 

• Large threshold => seldom

Runtime - 20

• Large threshold => seldom

reevaluation of the distribution

• Benefits

• Little input requirements 

from the application

• Easy to find a good interval: 

10^4 - 10^6

Drawbacks:
• To late for a load-balancing problem



How to resize ?

Runtime - 21



Maximize the throughput  
Focus on the present

• Maximize the instant speed of 

contexts

• Don't leave anyone behind

Monitor last execution interval

Forecast next execution interval

Runtime - 22



Maximize the throughput 
Focus on the present

• Maximize the instant speed of 

contexts

• Don't leave anyone behind

Speed of a worker in a context

Monitor last execution interval

Forecast next execution interval

Runtime - 23

Speed of a worker in a context



Maximize the throughput 
Focus on the present

• Maximize the instant speed of 

contexts

• Don't leave anyone behind

Speed of a worker in a context

Monitor last execution interval

Forecast next execution interval

Runtime - 24

Speed of a worker in a context

Flops to be executed by a worker in a context



Maximize the throughput 
Focus on the present

• Maximize the instant speed of 

contexts

• Don't leave anyone behind

Speed of a worker in a context

Monitor last execution interval

Forecast next execution interval

Runtime - 25

Speed of a worker in a context

Flops to be executed by a worker in a context

Execution time of the immediate frame



Tracing the decision process
Focus on the present

• Both contexts run at the same 

speed

• Drawbacks:

• Force the small kernel to 

run too fast

Runtime - 26

• Important penalty on the 

big kernel 

• No information about the 

future

• No prediction of the 

performance of resources 



Minimize the execution time
Forecast the future

• Input: the workload of the application (number of flops)

• Compute the number of resources of each type of architecture 

needed by each context

- How many GPUs/CPUs ?

- To execute in a minimal amount of time

Runtime - 27



• Input: the workload of the application (number of flops)

• Compute the number of resources of each type of architecture 

needed by each context

- How many GPUs/CPUs ?

- To execute in a minimal amount of time

Minimize the execution time
Forecast the future

nGPUs in Context c Workload of 

Runtime - 28

nCPUs in Context c

nGPUs in Context c Workload of 
Context c



• Input: the workload of the application (number of flops)

• Compute the number of resources of each type of architecture 

needed by each context

- How many GPUs/CPUs ?

- To execute in a minimal amount of time

Minimize the execution time 
Forecast the future

nGPUs in Context c Workload of 

Runtime - 29

nCPUs in Context c

nGPUs in Context c Workload of 
Context c

Speed of CPUs
Speed of GPUs



• Input: the workload of the application (number of flops)

• Compute the number of resources of each type of architecture 

needed by each context

- How many GPUs/CPUs ?

- To execute in a minimal amount of time

Minimize the execution time 
Forecast the future

nGPUs in Context c Workload of 

Runtime - 30

nCPUs in Context c

nGPUs in Context c Workload of 
Context c

Execution time of the application Speed of CPUs
Speed of GPUs



Tracing the decision process
Forecast the future

• Objective:

• Same termination time

• Monitored speed reinserted 

in the system

Runtime - 31

• Resources attracted by the 

computations where they 

perform best



When the programmer is a great wizard
History based performance models

• Knowledge of the execution flow of the application

- At least a part of if

- Types of tasks

- Number of tasks of each type

• Previous calibration of the application

Runtime - 32

- Prediction of the execution time of the tasks

- StarPU system of calibration

- Scheduling policies based on:

• Task completion time estimation

• Data transfer time estimation



Minimize the execution time 
Forecast the future in detail

• Input: the workload of the application( number of tasks of each type)

• Calibration information => execution time of each type of kernel

• Scheduling policy – independent decisions

Runtime - 33



Minimize the execution time 
Forecast the future in detail

• Input: the workload of the application( number of tasks of each type)

• Calibration information => execution time of each type of kernel

• Scheduling policy – independent decisions

Execution time of task t on worker w

Runtime - 34



Minimize the execution time 
Forecast the future in detail

• Input: the workload of the application( number of tasks of each type)

• Calibration information => execution time of each type of kernel

• Scheduling policy – independent decisions

Execution time of task t on worker w

Runtime - 35

Number of tasks t on worker w



Minimize the execution time 
Forecast the future in detail

• Input: the workload of the application( number of tasks of each type)

• Calibration information => execution time of each type of kernel

• Scheduling policy – independent decisions

Execution time of task t on worker w

Runtime - 36

Number of tasks t on worker w

Execution time of the application



Tracing the decision process 
Forecast the future

• Objective:

• Same termination time

• Resources attracted by the 

type of tasks they execute 

best

Runtime - 37

• CPUs – better 

executing small 

Cholesky

• GPUs – better 

executing big Cholesky



Conclusion

• Scheduling Contexts allow using multiple parallel libraries 

simultaneously

- Currently implemented in StarPU

- A Hypervisor dynamically shrinks / extends contexts

• Contexts may be resized whenever we have: 

- Idle resources

Runtime

- “Significant” differences of velocity between contexts

• Estimated speed vs computed speed

• Acts sooner than idleness based criteria

• Different algorithms to improve the execution of the application

- Maximize its throughput 

- Minimize its execution time

- 38



Future Work

• New metrics to trigger the resizing
- Burden on the application vs precision of the decision?

• New policies to improve the resizing decision

• More intelligent sharing of resources (GPUs)

Runtime - 39

• Experiment on real life applications

• Extend scheduling contexts to other parallel environments

• …
• And much more!


