
Active Data: A Programming Model to Manage
Data Life Cycle Across Heterogeneous Systems

and Infrastructures

A. Simonet1, G. Fedak1, M. Ripeanu2

(1) {Anthony.Simonet, Gilles.Fedak}@inria.fr
INRIA, University of Lyon, France

(2) matei@ece.ubc.ca
University of British Columbia, Canada

The Ninth Workshop of the INRIA-Illinois Joint Laboratory
on Petascale Computing

June 12-14, 2013, Lyon, France

G. Fedak (INRIA/UBC) Active Data Joint-Lab Workshop 1 / 22

Outline of Topics

1 Introduction
Challenges of Life-Cycle Management
Active Data at a Glance
Related Works

2 The Model and Implementation
Life-Cycle Model
Execution Runtime

3 Experiments
Performance Evaluation
Use Cases

4 Conclusion

G. Fedak (INRIA/UBC) Active Data Joint-Lab Workshop 2 / 22

Outline

1 Introduction
Challenges of Life-Cycle Management
Active Data at a Glance
Related Works

2 The Model and Implementation
Life-Cycle Model
Execution Runtime

3 Experiments
Performance Evaluation
Use Cases

4 Conclusion

G. Fedak (INRIA/UBC) Active Data Joint-Lab Workshop 3 / 22

Context: Data Deluge

• Huge and growing volume of information originating from multiple
sources.

!"#$%&'("$#) *+'&,-./"#)0+1)*2+("2() 34(")5-$-)!"$(%"($)

• Impacts many scientific disciplines and industry branches
• Large Scientific Instruments (LSST, LHC, OOOI), but not only (Sequencing

machines)
• Internet and Social Network (Google, Facebook, Twitter, etc.)
• Open Data (Open Library, Governemental, Genomics)

→ impacts the whole process of scientific discovery (4th paradigm of science)

G. Fedak (INRIA/UBC) Active Data Joint-Lab Workshop 4 / 22

Big Data Challenges

• Big Data creates several challenges :
• how to scale the infrastructure ?

• end-to-end performance improvement, inter-system optimization.
• how to improve productivity of data-intensive scientist ?

• workflow, programming language, quality of data provenance.
• how to enable collaborative data science ?

• incentive for data publication, data-sets sharing, collaborative workflow.

• New models and software are needed to represent and manipulate large
and distributed scientific data-sets.

G. Fedak (INRIA/UBC) Active Data Joint-Lab Workshop 5 / 22

Focus on Data Life-Cycle
Data Life Cycle: the course of operational stages through which data pass
from the time when they enter a system to the time when they leave it.

!"#$%&%'()* +,-.,("-&&%)/* 01(,2/-*

!)234&%&*

!)234&%&*

We’re aiming at :

• A model to capture the essential life cycle stages and properties:
creation, deletion, faults, replication, error checking . . .

• Allows legacy systems to expose their intrinsic data life cycle.
• Allow to reason about data sets handled by heterogeneous software and

infrastructures.
• Simplify the programming of applications that implement data life cycle

management.

G. Fedak (INRIA/UBC) Active Data Joint-Lab Workshop 6 / 22

Active Data at a Glance

• a life cycle model, inspired by Petri Net, which allows data management
systems to expose data life cycle through a well-formalized
representation

• a programming model and a runtime environment, which allows to
program applications by specifying for each step of the data life cycle, the
code that will be executed.

CREATED
t1 WRITTEN

t2

READ

t3

LOOP

t4

t5 DELETED

Figure: Representation of the
“Write-Once, Read-Many” data life
cycle.

Figure: Average number of transitions
per second handled by the Active Data
Service

G. Fedak (INRIA/UBC) Active Data Joint-Lab Workshop 7 / 22

Active Data at a Glance
• a life cycle model, inspired by Petri Net, which allows data management

systems to expose data life cycle through a well-formalized
representation

• a programming model and a runtime environment, which allows to
program applications by specifying for each step of the data life cycle, the
code that will be executed.

CREATED
t1 WRITTEN

t2

READ

t3

LOOP

t4

t5 DELETED

Figure: Representation of the
“Write-Once, Read-Many” data life
cycle.

item, a message (or event) is sent to the other nodes of the
system to notify them about the transition and this causes
the transition handler code to be executed. The paradigm
used by Active Data to propagate transitions is based on
Publish/Subscribe [?]. Data management systems publish
transitions to a centralized service called Active Data Ser-
vice.

Thus, at the root of Active Data is a representation of
data life cycles. We base our model on Petri Networks [?],
which is a formalism and a graphical tool widely used for the
analysis of systems with concurrency and resource sharing.
Petri Nets can depict very intuitively data life cycles: Places,
represented by circles are the states of the life cycle; Tran-
sitions, represented by rectangles are the operations that
happen on data items; Tokens, represented by • in Places,
are data items in a particular state of the life cycle. It is
common for distributed systems to deal with data replicas.
Each data replica is represented by a single Petri Net token.
Several tokens on different places represent the individual
states of several data replicas distributed on different nodes.

2.3 Example
To illustrate a data life cycle model, Figure ?? shows a

representation of the “Write-Once, Read-Many” life cycle.
A data item starts its life in the Created place, then is
written once (Written place), may be read once or several
times (loop between Read and Loop places) and finally
deleted (Deleted place). In this example, the transition
t1 corresponds to the action of writing data, t2 and t3 are
triggered when reading data, t4 is a phony transition corre-
sponding to a loop so that data can be read again, and t5
corresponds to a data item deletion.

We present a short code sample that illustrates how to
automatically perform curation when data get written in the
system. Whenever transition t2 is triggered, the application
creates a md5 signature file.

The programmer first writes the handler that contains the
checksum computation:

Trans i t ionHandler md5Handler = new �
→Trans i t ionHandler () {

public void handler (L i f eCyc l e lc , S t r ing �
→transit ionName , boolean i s Lo c a l) {

MessageDigest md = �
→MessageDigest . g e t In s tance (”MD5”) ;

S t r ing path = getPath (l c . ge t Id ()) ;
InputStream input = new �

→Fi leInputStream (path) ;
byte bu f f e r [] = new byte [2 0 4 8] ;

int n = 0 ;
while ((n = input . read (bu f f e r)) > 0)

md. update (bu f f e r , 0 , n) ;

byte [] d i g e s t = md. d i g e s t () ;
B ig Intege r b i g In t = new �

→Big Intege r (1 , d i g e s t) ;
S t r ing hash = b ig In t . t oS t r i ng (16) ;
while (hash . l ength () < 32)

hash = ”0 ” + hash ;

OutputStream output = new �
→FileOutputStream (path + ” .md5”) ;

output . wr i t e (hash . getBytes ()) ;
output . c l o s e () ;

}
} ;

Listing 1: md5 sum transition handler

The handler in Listing ?? is a Java object that implements
the TransitionHandler interface. The handler() method is
invoked by the system when the transition is triggered. The
first argument provides information about the data that was

written; we use it to get the file path. Then we compute the
file’s md5 sum and write it to a new file.

The second argument is the name of the transition that
was triggered; the last argument indicates whether the tran-
sition was triggered on the same node. Here we do the
same thing whether the transition was triggered locally or
remotely.

The programmer further passes the code to the Active
Data runtime, specifying it should be run after transition t2
was triggered:

c l i e n t . subscr ibeTo (t2 , md5Handler) ;

2.4 Application scope
The Active Data programming model offers the opportu-

nity to develop a broad range of applications covering a wide
range of scenarios. However the scope and the methodology
differs whether the data life cycle is known a priori or has to
be defined. We now review some of the application domains
of Active Data.

• Active Data is integrated into a particular data man-
agement software, such as a file storage, a data-flow
scheduler or a file transfer service. In this case, the set
of transitions is known by the programmer, so they
can express their program as a set of transition han-
dlers implementing data operations. For instance, the
implementation of Active Data for BitDew (see Sec-
tion ??) would allow to program a wide range of DLM
applications such as backup system, distributed check-
point servers, collective file operation (scatter/gather,
alltoall), data-intense applications, execution runtimes
such as MapReduce or Allpairs, automated-tiered stor-
age systems etc.

• Particular data management systems which lacks DLM
features. Active Data can be integrated after an anal-
ysis of the system to extract the data life cycle. This
would provide either additional programming function-
alities, such as in the previous case, or permit specific
optimizations to this system.

• Users also have the possibility to implement from scratch
their data life cycle based on their own needs, that is
without any data management substrate. In this case,
the application is expressed as set of operations on data
and the developer takes care of generating the transi-
tion whenever operations are actually performed. In
this case, the benefit of using Active Data is to have a
clear specification of the data life cycle.

3. LIFE CYCLE MODEL
In this section we first give notations and formal defini-

tions for data life cycle models inspired by Petri Nets. Then
we present several developments that allow the model to go
beyond a simple description of data life cycles: i) decora-
tion of tokens to allow unique identification of data replica,
ii) life cycle termination rules, which allows to detect errors
and illegitimate operations and iii) a mechanisms to expose
a unified view of the life cycle even though it involves several
heterogeneous systems.

A Petri Net is a 5-tuple PN = (P, T, F, W, M0) where:

• P = {p1, p2, . . . , pm} is a finite set of places;

• T = {t1, t2, . . . , tn} is a finite set of transitions;

Figure: Average number of transitions
per second handled by the Active Data
Service

G. Fedak (INRIA/UBC) Active Data Joint-Lab Workshop 7 / 22

Related Works

• Data-centric parallel programming languages (MapReduce, Dryad,
Allpairs, Twister, PigLatin . . .)

• Runtime execution environments for dynamic data : incremental
processing (Percolator), parallel stream processing (Nephele,
MapReduce Online), workflow (Chimera)

• Event based processing (Mace, libasync, Incontext)
• Data Provenance addresses the issue of representation of data-set

derivation (PASS, Open Provenance Model)
• Data Management Software (BitDew, Chirp, MosaStore, Globus Online,

DCache, iRods and many more)

G. Fedak (INRIA/UBC) Active Data Joint-Lab Workshop 8 / 22

Outline

1 Introduction
Challenges of Life-Cycle Management
Active Data at a Glance
Related Works

2 The Model and Implementation
Life-Cycle Model
Execution Runtime

3 Experiments
Performance Evaluation
Use Cases

4 Conclusion

G. Fedak (INRIA/UBC) Active Data Joint-Lab Workshop 9 / 22

Life-Cycle Model: the Basics
• A Petri Net is a 5-tuple PN = (P,T ,F ,W ,M0) where:

• P = {CREATED, DELETED, p1, p2, . . . , pm} is a finite set of places;
• T = {t1, t2, . . . , tn} is a finite set of transitions;
• Data items are represented by tokens •.
• W : F → N+ is a weight function which indicates how many tokens every

transition requires and how many token it produces.

• Data Identification, we tag each token δ with a triplet (id , i ,p) where id is
a unique data identifier, identical for all the replica of a single data item, i
is the replica number and p ∈ P is a place.

• Data Creation a data item is created as a token in the CREATED place
labelled with the triplet (id ,1, CREATED).

• Data Replication
P1

t1

NEW INSTANCE
2

t2
2

2

Figure: Data instance creation.

G. Fedak (INRIA/UBC) Active Data Joint-Lab Workshop 10 / 22

Life-Cycle Model: the Basics
• A Petri Net is a 5-tuple PN = (P,T ,F ,W ,M0) where:

• P = {CREATED, DELETED, p1, p2, . . . , pm} is a finite set of places;
• T = {t1, t2, . . . , tn} is a finite set of transitions;
• Data items are represented by tokens •.
• W : F → N+ is a weight function which indicates how many tokens every

transition requires and how many token it produces.

• Data Identification, we tag each token δ with a triplet (id , i ,p) where id is
a unique data identifier, identical for all the replica of a single data item, i
is the replica number and p ∈ P is a place.

• Data Creation a data item is created as a token in the CREATED place
labelled with the triplet (id ,1, CREATED).

• Data Replication
P1

t1

NEW INSTANCE
2

t2
2

2

Figure: Data instance creation.

G. Fedak (INRIA/UBC) Active Data Joint-Lab Workshop 10 / 22

Composition of Life-Cycle Model

• Life Cycle Composition To compose two independent life cycles A and
B, we define the start places, SaA ⊆ PA, and stop places, SoB ⊆ PB.

• when one token reaches SaA, it creates a new token in the place CREATED
of B. New tokens are labeled with the quadruplet (idA, idB , rB , qB).

• When one token reaches SoB , it creates a new token in the place DELETED
of A.

• Life Cycle termination We say that a data item terminates its life cycle,
when all of its tokens reach the DELETED place.

• Composed Life Cycles Termination We say that a data item terminates
a composed life cycle, represented by A and B, their start sets SaA and
SaB, and stop sets SoA and SoB, when it terminates A and terminates B.

G. Fedak (INRIA/UBC) Active Data Joint-Lab Workshop 11 / 22

Composition of Life-Cycle Model

• Life Cycle Composition To compose two independent life cycles A and
B, we define the start places, SaA ⊆ PA, and stop places, SoB ⊆ PB.

• when one token reaches SaA, it creates a new token in the place CREATED
of B. New tokens are labeled with the quadruplet (idA, idB , rB , qB).

• When one token reaches SoB , it creates a new token in the place DELETED
of A.

• Life Cycle termination We say that a data item terminates its life cycle,
when all of its tokens reach the DELETED place.

• Composed Life Cycles Termination We say that a data item terminates
a composed life cycle, represented by A and B, their start sets SaA and
SaB, and stop sets SoA and SoB, when it terminates A and terminates B.

G. Fedak (INRIA/UBC) Active Data Joint-Lab Workshop 11 / 22

Execution Runtime

Active Data is composed of two parts:

• the execution runtime
• manages data life cycles, publishes transitions, triggers handler code

executions, and guarantees execution correctness
• distributed system based on Publish/Subscribe

• the programming interface (API)
• allows data management systems to publish transitions
• allows programmers to develop applications by registering their transition

handlers
• two kinds of transition subscription :

• subscribe to a specific transition for any data items
• subscribe to a specific data item and being notified for any life cycle transitions.

G. Fedak (INRIA/UBC) Active Data Joint-Lab Workshop 12 / 22

Integration with Data Management Systems

Created t1 To Place

t2

Deleted
t3

Placedt4

Loop
t5

2

t6

t7

Lost

t8

t9

(a) Bitdew Scheduler

Created
t1

Ready

t2

Started
t3

Completed

t4

Deleted Invalid
t5

t6

t7

t8

(b) Bitdew File Transfer

IN CREATE
t1

IN MOVED FROM

t2

t3
IN MOVED TO

t4

IN CLOSE WRITE

t5
t6

t7 t8t9 t10t11

DELETED

t14

t13CREATED
t12

(c) inotify

Get

Put

Created

t5

t6t7

t8

Deleted

(d) iRODS

Created

t1 t2

Succeeded Failed

t3 t4

Deleted

(e) Globus Online

Figure 3: Data life cycle models for four data management system.

structed from its documentation.
Reading the source code of BitDew, we observe that data

items are managed by instances of the Data class, and this
class has the status variable which holds the data item
state. Therefore, we simply deduce from the enumeration of
the possible value of status the set of corresponding places
in the Petri Net (see Figure 2a and 2b). By further analyz-
ing the source code, we construct the model and summarize
how high level DLM features are modelized using Active
Data model:

Scheduling and replication Part of the complexity of
the data life cycle in BitDew comes from the Data Scheduler
that schedules data on nodes. Whenever a data item is
scheduled on a node, a new replica is created. We represent
replicas with a loop on the scheduled state that creates an
additional token every time a token passes through it.

Fault tolerance Because one of BitDew’s target archi-
tectures is Desktop Grids, it must deal with frequent faults,
i.e. nodes going offline. When a data item is scheduled to a
node, and the node disappears from the system, it is marked
with a Lost state and will be scheduled to an other node.
This is represented by the loop Placed, Lost, tosched-
ule.

Composition of File Transfer and Data Scheduler
In BitDew, the Data Scheduler and File Transfer Service are
closely related, and so are their life cycles. A file transfer
cannot exist without an associated data item, and a deleted
data item cannot be transferred. To connect the two Petri
Nets we need to define the start and stop places as explained
in section 3. In BitDew, a new file transfer can be started
for a Data object in any state, except Deleted, Lost and
Loop. To represent this, we define all the places but the
three mentioned above as start places and connect them to
the transfer life cycle model.

5. EXPERIMENTAL EVALUATION
In this section we report on experimental evaluation of

the prototype using micro-benchmarks and use-case scenar-
ios. Experiments are run on a cluster of the Grid’5000 ex-
perimental platform [5] composed of 92 2-CPU nodes. Each
CPU is an Intel Xeon L5420 with 4 cores running at 2.5Ghz.
Each node is equipped with 16GB of RAM and a 320GB

Figure 4: Average number of transitions per second handled
by the Active Data Service

Sata II hard drive. Nodes are interconnected with Gigabit
Ethernet and are running Linux 2.6.32.

5.1 Performance Evaluation
To evaluate the performance in terms of throughput, la-

tency and overhead, we conduct a set of benchmarks based
on the version 0.1.2 of the prototype1.

Throughput is measured as the number of transitions that
Active Data is able to handle per second. In order to stress
the system we run one Active Data server and a varying
number of clients (one per cluster node), which publish 10,000
transitions in a loop without a pause between the iterations.
Figure 3 plots the average number of transitions processed
per second against the number of clients. Once saturated,
the Active Data Service can handle up to 32,000 transitions
per second.

We evaluate the latency, i.e the time to create of a new
life cycle and to publish a transition, and the overhead, i.e
the additional time incurred by the Active Data runtime en-
vironment. We use the BitDew file transfer operation as a
reference to measure the overhead. The experiment consists
in creating and uploading 1,000 files (1KB to stress the sys-

1Active Data is free software, available under the GPL li-
cence http://active-data.gforge.inria.fr

• BitDew (INRIA), programmable environment for
data management.

• inotify Linux kernel subsystem: notification system
for file creation, modification, write, movement and
deletion.

• iRODS (DICE, Univ. North Carolina), rule-oriented
data management system.

• Globus Online (ANL) offers fast, simple and
reliable service to transfer large volumes of data.

• Data scheduling and
replication

• Fault tolerance
• Composition of File Transfer

and Data Scheduler

G. Fedak (INRIA/UBC) Active Data Joint-Lab Workshop 13 / 22

Outline

1 Introduction
Challenges of Life-Cycle Management
Active Data at a Glance
Related Works

2 The Model and Implementation
Life-Cycle Model
Execution Runtime

3 Experiments
Performance Evaluation
Use Cases

4 Conclusion

G. Fedak (INRIA/UBC) Active Data Joint-Lab Workshop 14 / 22

Performance Evaluation

Created t1 To Place

t2

Deleted
t3

Placedt4

Loop
t5

2

t6

t7

Lost

t8

t9

(a) Bitdew Scheduler

Created
t1

Ready

t2

Started
t3

Completed

t4

Deleted Invalid
t5

t6

t7

t8

(b) Bitdew File Transfer

IN CREATE
t1

IN MOVED FROM

t2

t3
IN MOVED TO

t4

IN CLOSE WRITE

t5
t6

t7 t8t9 t10t11

DELETED

t14

t13CREATED
t12

(c) inotify

Get

Put

Created

t5

t6t7

t8

Deleted

(d) iRODS

Created

t1 t2

Succeeded Failed

t3 t4

Deleted

(e) Globus Online

Figure 3: Data life cycle models for four data management system.

structed from its documentation.
Reading the source code of BitDew, we observe that data

items are managed by instances of the Data class, and this
class has the status variable which holds the data item
state. Therefore, we simply deduce from the enumeration of
the possible value of status the set of corresponding places
in the Petri Net (see Figure 2a and 2b). By further analyz-
ing the source code, we construct the model and summarize
how high level DLM features are modelized using Active
Data model:

Scheduling and replication Part of the complexity of
the data life cycle in BitDew comes from the Data Scheduler
that schedules data on nodes. Whenever a data item is
scheduled on a node, a new replica is created. We represent
replicas with a loop on the scheduled state that creates an
additional token every time a token passes through it.

Fault tolerance Because one of BitDew’s target archi-
tectures is Desktop Grids, it must deal with frequent faults,
i.e. nodes going offline. When a data item is scheduled to a
node, and the node disappears from the system, it is marked
with a Lost state and will be scheduled to an other node.
This is represented by the loop Placed, Lost, tosched-
ule.

Composition of File Transfer and Data Scheduler
In BitDew, the Data Scheduler and File Transfer Service are
closely related, and so are their life cycles. A file transfer
cannot exist without an associated data item, and a deleted
data item cannot be transferred. To connect the two Petri
Nets we need to define the start and stop places as explained
in section 3. In BitDew, a new file transfer can be started
for a Data object in any state, except Deleted, Lost and
Loop. To represent this, we define all the places but the
three mentioned above as start places and connect them to
the transfer life cycle model.

5. EXPERIMENTAL EVALUATION
In this section we report on experimental evaluation of

the prototype using micro-benchmarks and use-case scenar-
ios. Experiments are run on a cluster of the Grid’5000 ex-
perimental platform [5] composed of 92 2-CPU nodes. Each
CPU is an Intel Xeon L5420 with 4 cores running at 2.5Ghz.
Each node is equipped with 16GB of RAM and a 320GB

Figure 4: Average number of transitions per second handled
by the Active Data Service

Sata II hard drive. Nodes are interconnected with Gigabit
Ethernet and are running Linux 2.6.32.

5.1 Performance Evaluation
To evaluate the performance in terms of throughput, la-

tency and overhead, we conduct a set of benchmarks based
on the version 0.1.2 of the prototype1.

Throughput is measured as the number of transitions that
Active Data is able to handle per second. In order to stress
the system we run one Active Data server and a varying
number of clients (one per cluster node), which publish 10,000
transitions in a loop without a pause between the iterations.
Figure 3 plots the average number of transitions processed
per second against the number of clients. Once saturated,
the Active Data Service can handle up to 32,000 transitions
per second.

We evaluate the latency, i.e the time to create of a new
life cycle and to publish a transition, and the overhead, i.e
the additional time incurred by the Active Data runtime en-
vironment. We use the BitDew file transfer operation as a
reference to measure the overhead. The experiment consists
in creating and uploading 1,000 files (1KB to stress the sys-

1Active Data is free software, available under the GPL li-
cence http://active-data.gforge.inria.fr

Figure: Average number of transitions per second handled by the Active Data Service

Latency
med 90th centile std dev

Local 0.77 ms 0.81 ms 18.68 ms
Eth. 1.25 ms 1.45 ms 12.97 ms

Overhead Eth. w/o AD with AD
38.04 s 40.6 s (4.6%)

Table: Latency in milliseconds for life cycle creation and transition publication and
overhead measured using BitDew file transfers (1K files) with and without Active Data.

G. Fedak (INRIA/UBC) Active Data Joint-Lab Workshop 15 / 22

Amazon S3 Cache
Scenario: Caching Amazon S3
• evaluates the ability to rapidly

prototype a data management
application using Active Data
and BitDew.

• Write-through cache policy
expressed using life-cycle
transitions.

• evaluated using a pseudo
master-worker application (10
nodes, 200MB input)

w cache w/o cache Difference
In 2350 Mb 2350 Mb 0 Mb
Out 0.15 Mb 1976.17 Mb 1976.02 Mb
#Put 13 13 0
#Get 0 20 20
Dollars 0.3 0.53 0.23

Integration with Data Management Systems

Created t1 To Place

t2

Deleted
t3

Placedt4

Loop
t5

2

t6

t7

Lost

t8

t9

(a) Bitdew Scheduler

Created
t1

Ready

t2

Started
t3

Completed

t4

Deleted Invalid
t5

t6

t7

t8

(b) Bitdew File Transfer

IN CREATE
t1

IN MOVED FROM

t2

t3
IN MOVED TO

t4

IN CLOSE WRITE

t5
t6

t7 t8t9 t10t11

DELETED

t14

t13CREATED
t12

(c) inotify

Get

Put

Created

t5

t6t7

t8

Deleted

(d) iRODS

Created

t1 t2

Succeeded Failed

t3 t4

Deleted

(e) Globus Online

Figure 3: Data life cycle models for four data management system.

structed from its documentation.
Reading the source code of BitDew, we observe that data

items are managed by instances of the Data class, and this
class has the status variable which holds the data item
state. Therefore, we simply deduce from the enumeration of
the possible value of status the set of corresponding places
in the Petri Net (see Figure 2a and 2b). By further analyz-
ing the source code, we construct the model and summarize
how high level DLM features are modelized using Active
Data model:

Scheduling and replication Part of the complexity of
the data life cycle in BitDew comes from the Data Scheduler
that schedules data on nodes. Whenever a data item is
scheduled on a node, a new replica is created. We represent
replicas with a loop on the scheduled state that creates an
additional token every time a token passes through it.

Fault tolerance Because one of BitDew’s target archi-
tectures is Desktop Grids, it must deal with frequent faults,
i.e. nodes going offline. When a data item is scheduled to a
node, and the node disappears from the system, it is marked
with a Lost state and will be scheduled to an other node.
This is represented by the loop Placed, Lost, tosched-
ule.

Composition of File Transfer and Data Scheduler
In BitDew, the Data Scheduler and File Transfer Service are
closely related, and so are their life cycles. A file transfer
cannot exist without an associated data item, and a deleted
data item cannot be transferred. To connect the two Petri
Nets we need to define the start and stop places as explained
in section 3. In BitDew, a new file transfer can be started
for a Data object in any state, except Deleted, Lost and
Loop. To represent this, we define all the places but the
three mentioned above as start places and connect them to
the transfer life cycle model.

5. EXPERIMENTAL EVALUATION
In this section we report on experimental evaluation of

the prototype using micro-benchmarks and use-case scenar-
ios. Experiments are run on a cluster of the Grid’5000 ex-
perimental platform [5] composed of 92 2-CPU nodes. Each
CPU is an Intel Xeon L5420 with 4 cores running at 2.5Ghz.
Each node is equipped with 16GB of RAM and a 320GB

Figure 4: Average number of transitions per second handled
by the Active Data Service

Sata II hard drive. Nodes are interconnected with Gigabit
Ethernet and are running Linux 2.6.32.

5.1 Performance Evaluation
To evaluate the performance in terms of throughput, la-

tency and overhead, we conduct a set of benchmarks based
on the version 0.1.2 of the prototype1.

Throughput is measured as the number of transitions that
Active Data is able to handle per second. In order to stress
the system we run one Active Data server and a varying
number of clients (one per cluster node), which publish 10,000
transitions in a loop without a pause between the iterations.
Figure 3 plots the average number of transitions processed
per second against the number of clients. Once saturated,
the Active Data Service can handle up to 32,000 transitions
per second.

We evaluate the latency, i.e the time to create of a new
life cycle and to publish a transition, and the overhead, i.e
the additional time incurred by the Active Data runtime en-
vironment. We use the BitDew file transfer operation as a
reference to measure the overhead. The experiment consists
in creating and uploading 1,000 files (1KB to stress the sys-

1Active Data is free software, available under the GPL li-
cence http://active-data.gforge.inria.fr

• BitDew (INRIA), programmable environment for
data management.

• inotify Linux kernel subsystem: notification system
for file creation, modification, write, movement and
deletion.

• iRODS (DICE, Univ. North Carolina), rule-oriented
data management system.

• Globus Online (ANL) offers fast, simple and
reliable service to transfer large volumes of data.

• Data scheduling and
replication

• Fault tolerance
• Composition of File Transfer

and Data Scheduler

G. Fedak (INRIA/LIP) Active Data Avalon 13 / 22

Figure: BitDew File Transfer

• t1 If cache hit, the handler
serves the file from the cache;
if cache miss, the handler gets
the file from Amazon S3

• t4 the handler transfers the
data item to Amazon S3 +
cache eviction policy.

G. Fedak (INRIA/UBC) Active Data Joint-Lab Workshop 16 / 22

Distributed Sensor Networks

• evaluates the ability to develop
distributed application based
on data life-cycle.

• sensors: images acquisition,
pre-processing, archiving to
centralized remote storage

• use Active Data to implement
distributed data throttling

w cache w/o cache Difference
In 2350 Mb 2350 Mb 0 Mb
Out 0.15 Mb 1976.17 Mb 1976.02 Mb
#Put 13 13 0
#Get 0 20 20
Dollars 0.3 0.53 0.23

Table 2: Cache experiment evaluation

5.4 Collaborative Sensor Network
This case study illustrates: i) the adaptability to legacy

data management systems, and ii) the ability to develop
distributed applications that support independent data life
cycles distributed over several local systems.

It is a common practice for applications acquiring data
– for example from a sensor network – to apply some pre-
processing before being pushed on a computing platform and
archived. Pre-processing can be used to filter, compress data
or remove invalid data. Such a sequence of operations can
easily be scripted using ad-hoc languages or programs. Data
throttling is also a common practice to reduce the amount
of data injected in the system at a given time. Decentral-
ize data throttling enables to reduce the load on the system
by dropping data before they are injected. However, it re-
quires coordination between the sensors, which can be made
possible when expressed with Active Data.

Here we consider a system where large high-resolution im-
ages are acquired from a network of cameras, each connected
to its own pre-processing node. Images are regularly writ-
ten on these nodes’ filesystems in the TIFF format. The
images are large, so each node must independently perform
some pre-processing to compress them in the JPEG for-
mat. Then the resulting JPEG files are transferred to a
distributed storage system where they will be available for
further processing. In addition to this, we want the nodes to
perform decentralized data throttling: they must drop TIFF
images received from their camera if the global number of
images pre-processed p during a defined time window w in
seconds reaches a threshold n.

As soon as a camera writes an image file on a node’s
filesystem, it is considered as a newly created data item and
its life cycle begins. To capture these transitions on files,
we use the inotify Linux kernel subsystem. Inotify allows
to watch a directory and receive events about the files it
contains. Events regard file creations, modifications, writes,
movements and deletions. As inotify events represent filesys-
tem events, and filesystems contain data (files) that are sub-
ject to transitions, we can represent inotify events with an
Active Data model. Figure 2c presents the inotify Active
Data model, constructed using the method described in sec-
tion 4.2. The combination of Active Data and inotify creates
a distributed inotify : all nodes can now coordinate based on
transitions happening on other nodes’ filesystems.

Now that sensor nodes can react to remote filesystem tran-
sitions, we can express our problem in terms of Active Data
transitions. Nodes locally run a program that reads inotify
events from their Linux kernel and publishes the correspond-
ing Active Data transition to all the other nodes. Each node
also independently runs a program to react to two types of
Active Data transitions:

• t12: we check if the transition is local or remote: if it
is remote and if the associated file is a JPEG image,
then a TIFF image has been pre-processed on a remote
sensor and we increment the local counter p.

• t5: if the transition is local, we check the associated file

1

2

3

4

5

6

7

8

9

10

0 30 60 90 120 150 180 210

TIF download Convertion to JPG JPG upload

Figure 5: Collaborative network of 10 sensors: the x axis
plots the time in seconds, for a window size w = 30 seconds.

type: if it is TIFF, we compare p to n and pre-process
the file only if p < n.

Every w seconds, each node sets its counter p to 0.
We implement and evaluate a simple scenario with 10 ma-

chines, each randomly downloading 5 TIFF images (between
121MB and 502MB) in a watched directory. We imple-
ment and configure the Active Data handlers for n = 3 and
w = 30 seconds.

Figure 4 presents the Gantt chart of the scenario which
lasts 279 seconds, where each numbered pair of lines repre-
sent the activity of one sensor. Red bars plot data acqui-
sition times, yellow bars plot data pre-processing and the
green bars plot the upload time of pre-processed data. On
each sensor, data acquisition and pre-processing and upload
are effectively performed in parallel. We see that the sys-
tem behaves as expected: for example in the time window
[60,90], 8 new JPEG images have been downloaded on the
nodes, but only 3 have been pre-processed. The other im-
ages have been dropped.

This scenario illustrate a powerful feature : Active Data
can turn into a distributed system, any local system that is
able to expose its local data life cycle.

5.5 Incremental MapReduce
In this case study, we investigate if an existing system can

be optimized by leveraging on Active Data’s ability to cope
with dynamic data.

One of the strongest limitations of MapReduce is its in-
efficiency to handle mutating data; when a MapReduce job
is run several times and only a subset of its input data set
has changed between two job executions, all map and reduce
tasks must be run again. Making MapReduce incremental
i.e. re-run map and reduce tasks only for the data input
chunks that have changed, necessitates to modify the com-
plex data flow of MapReduce. However, if the MapReduce
framework becomes aware of the life cycle of the data in-
volved, it can dynamically adapt the computation to data
modification.

We consider the MapReduce implementation made on top
of the BitDew storage system [32]. In this implementation,
a master node places the input data chunks in the BitDew
storage and launches a MapReduce execution, whose map
and reduce tasks are respectively executed by mappers and
reducers. However, input data can be updated directly in
the storage by external applications. To make the MapRe-
duce implementation incremental, we simply add a “dirty”
flag to the input data chunks. When a chunk is flagged as

Integration with Data Management Systems

Created t1 To Place

t2

Deleted
t3

Placedt4

Loop
t5

2

t6

t7

Lost

t8

t9

(a) Bitdew Scheduler

Created
t1

Ready

t2

Started
t3

Completed

t4

Deleted Invalid
t5

t6

t7

t8

(b) Bitdew File Transfer

IN CREATE
t1

IN MOVED FROM

t2

t3
IN MOVED TO

t4

IN CLOSE WRITE

t5
t6

t7 t8t9 t10t11

DELETED

t14

t13CREATED
t12

(c) inotify

Get

Put

Created

t5

t6t7

t8

Deleted

(d) iRODS

Created

t1 t2

Succeeded Failed

t3 t4

Deleted

(e) Globus Online

Figure 3: Data life cycle models for four data management system.

structed from its documentation.
Reading the source code of BitDew, we observe that data

items are managed by instances of the Data class, and this
class has the status variable which holds the data item
state. Therefore, we simply deduce from the enumeration of
the possible value of status the set of corresponding places
in the Petri Net (see Figure 2a and 2b). By further analyz-
ing the source code, we construct the model and summarize
how high level DLM features are modelized using Active
Data model:

Scheduling and replication Part of the complexity of
the data life cycle in BitDew comes from the Data Scheduler
that schedules data on nodes. Whenever a data item is
scheduled on a node, a new replica is created. We represent
replicas with a loop on the scheduled state that creates an
additional token every time a token passes through it.

Fault tolerance Because one of BitDew’s target archi-
tectures is Desktop Grids, it must deal with frequent faults,
i.e. nodes going offline. When a data item is scheduled to a
node, and the node disappears from the system, it is marked
with a Lost state and will be scheduled to an other node.
This is represented by the loop Placed, Lost, tosched-
ule.

Composition of File Transfer and Data Scheduler
In BitDew, the Data Scheduler and File Transfer Service are
closely related, and so are their life cycles. A file transfer
cannot exist without an associated data item, and a deleted
data item cannot be transferred. To connect the two Petri
Nets we need to define the start and stop places as explained
in section 3. In BitDew, a new file transfer can be started
for a Data object in any state, except Deleted, Lost and
Loop. To represent this, we define all the places but the
three mentioned above as start places and connect them to
the transfer life cycle model.

5. EXPERIMENTAL EVALUATION
In this section we report on experimental evaluation of

the prototype using micro-benchmarks and use-case scenar-
ios. Experiments are run on a cluster of the Grid’5000 ex-
perimental platform [5] composed of 92 2-CPU nodes. Each
CPU is an Intel Xeon L5420 with 4 cores running at 2.5Ghz.
Each node is equipped with 16GB of RAM and a 320GB

Figure 4: Average number of transitions per second handled
by the Active Data Service

Sata II hard drive. Nodes are interconnected with Gigabit
Ethernet and are running Linux 2.6.32.

5.1 Performance Evaluation
To evaluate the performance in terms of throughput, la-

tency and overhead, we conduct a set of benchmarks based
on the version 0.1.2 of the prototype1.

Throughput is measured as the number of transitions that
Active Data is able to handle per second. In order to stress
the system we run one Active Data server and a varying
number of clients (one per cluster node), which publish 10,000
transitions in a loop without a pause between the iterations.
Figure 3 plots the average number of transitions processed
per second against the number of clients. Once saturated,
the Active Data Service can handle up to 32,000 transitions
per second.

We evaluate the latency, i.e the time to create of a new
life cycle and to publish a transition, and the overhead, i.e
the additional time incurred by the Active Data runtime en-
vironment. We use the BitDew file transfer operation as a
reference to measure the overhead. The experiment consists
in creating and uploading 1,000 files (1KB to stress the sys-

1Active Data is free software, available under the GPL li-
cence http://active-data.gforge.inria.fr

• BitDew (INRIA), programmable environment for
data management.

• inotify Linux kernel subsystem: notification system
for file creation, modification, write, movement and
deletion.

• iRODS (DICE, Univ. North Carolina), rule-oriented
data management system.

• Globus Online (ANL) offers fast, simple and
reliable service to transfer large volumes of data.

• Data scheduling and
replication

• Fault tolerance
• Composition of File Transfer

and Data Scheduler

G. Fedak (INRIA/LIP) Active Data Avalon 13 / 22

• t12: we check if the transition is
local or remote: if it is remote
we increment the local counter
p.

• t5: if the transition is local, we
upload the file only if p < n.

G. Fedak (INRIA/UBC) Active Data Joint-Lab Workshop 17 / 22

Incremental MapReduce
Scenario: Incremental MapReduce

• we investigate if an existing
system can be optimized by
leveraging on Active Data’s
ability to cope with dynamic
data.

• Making MapReduce
incremental : re-run map and
reduce tasks only for the data
input chunks that have
changed

• Evaluated using the word
count application (10 mappers,
5 reducers, 3.2 GB split in 200
chunks)

• Implemented using
BitDew-MapReduce

• Active Data notifies that a file
transfer is modifying an input
chunk. The Mapper Transition
handler flags the chunk as
dirty.

• the mapper executes again the
map task on dirty chunk and
sends the updated
intermediate results to the
reducers.

• Reducers proceed as usual to
compute again the final result.

Fraction modified 20% 40% 60% 80%
Update time 27% 49% 71% 94%

G. Fedak (INRIA/UBC) Active Data Joint-Lab Workshop 18 / 22

Data Provenance

Scenario: Data Provenance
• take advantage Active Data’s

unified view of data-sets over
heterogeneous systems.

• file transfers service (Globus
Online) + metadata catalog
(iRODS).

• query iRods and obtain file
transfer information :
endpoints, completion date,
request time

• To compose the two life cycles, the place
SUCCEEDED from Globus Online is a start
place which creates a token in the iRODS
life cycle model.

Integration with Data Management Systems

Created t1 To Place

t2

Deleted
t3

Placedt4

Loop
t5

2

t6

t7

Lost

t8

t9

(a) Bitdew Scheduler

Created
t1

Ready

t2

Started
t3

Completed

t4

Deleted Invalid
t5

t6

t7

t8

(b) Bitdew File Transfer

IN CREATE
t1

IN MOVED FROM

t2

t3
IN MOVED TO

t4

IN CLOSE WRITE

t5
t6

t7 t8t9 t10t11

DELETED

t14

t13CREATED
t12

(c) inotify

Get

Put

Created

t5

t6t7

t8

Deleted

(d) iRODS

Created

t1 t2

Succeeded Failed

t3 t4

Deleted

(e) Globus Online

Figure 3: Data life cycle models for four data management system.

structed from its documentation.
Reading the source code of BitDew, we observe that data

items are managed by instances of the Data class, and this
class has the status variable which holds the data item
state. Therefore, we simply deduce from the enumeration of
the possible value of status the set of corresponding places
in the Petri Net (see Figure 2a and 2b). By further analyz-
ing the source code, we construct the model and summarize
how high level DLM features are modelized using Active
Data model:

Scheduling and replication Part of the complexity of
the data life cycle in BitDew comes from the Data Scheduler
that schedules data on nodes. Whenever a data item is
scheduled on a node, a new replica is created. We represent
replicas with a loop on the scheduled state that creates an
additional token every time a token passes through it.

Fault tolerance Because one of BitDew’s target archi-
tectures is Desktop Grids, it must deal with frequent faults,
i.e. nodes going offline. When a data item is scheduled to a
node, and the node disappears from the system, it is marked
with a Lost state and will be scheduled to an other node.
This is represented by the loop Placed, Lost, tosched-
ule.

Composition of File Transfer and Data Scheduler
In BitDew, the Data Scheduler and File Transfer Service are
closely related, and so are their life cycles. A file transfer
cannot exist without an associated data item, and a deleted
data item cannot be transferred. To connect the two Petri
Nets we need to define the start and stop places as explained
in section 3. In BitDew, a new file transfer can be started
for a Data object in any state, except Deleted, Lost and
Loop. To represent this, we define all the places but the
three mentioned above as start places and connect them to
the transfer life cycle model.

5. EXPERIMENTAL EVALUATION
In this section we report on experimental evaluation of

the prototype using micro-benchmarks and use-case scenar-
ios. Experiments are run on a cluster of the Grid’5000 ex-
perimental platform [5] composed of 92 2-CPU nodes. Each
CPU is an Intel Xeon L5420 with 4 cores running at 2.5Ghz.
Each node is equipped with 16GB of RAM and a 320GB

Figure 4: Average number of transitions per second handled
by the Active Data Service

Sata II hard drive. Nodes are interconnected with Gigabit
Ethernet and are running Linux 2.6.32.

5.1 Performance Evaluation
To evaluate the performance in terms of throughput, la-

tency and overhead, we conduct a set of benchmarks based
on the version 0.1.2 of the prototype1.

Throughput is measured as the number of transitions that
Active Data is able to handle per second. In order to stress
the system we run one Active Data server and a varying
number of clients (one per cluster node), which publish 10,000
transitions in a loop without a pause between the iterations.
Figure 3 plots the average number of transitions processed
per second against the number of clients. Once saturated,
the Active Data Service can handle up to 32,000 transitions
per second.

We evaluate the latency, i.e the time to create of a new
life cycle and to publish a transition, and the overhead, i.e
the additional time incurred by the Active Data runtime en-
vironment. We use the BitDew file transfer operation as a
reference to measure the overhead. The experiment consists
in creating and uploading 1,000 files (1KB to stress the sys-

1Active Data is free software, available under the GPL li-
cence http://active-data.gforge.inria.fr

• BitDew (INRIA), programmable environment for
data management.

• inotify Linux kernel subsystem: notification system
for file creation, modification, write, movement and
deletion.

• iRODS (DICE, Univ. North Carolina), rule-oriented
data management system.

• Globus Online (ANL) offers fast, simple and
reliable service to transfer large volumes of data.

• Data scheduling and
replication

• Fault tolerance
• Composition of File Transfer

and Data Scheduler

G. Fedak (INRIA/LIP) Active Data Avalon 13 / 22

• t1 a handler to store the file in iRODS. The
token now contains Globus Online and
iRods identifiers .

• t5 the handler queries Globus Online to get
file transfer information and publish as
iRods meta-data.

G. Fedak (INRIA/UBC) Active Data Joint-Lab Workshop 19 / 22

Outline

1 Introduction
Challenges of Life-Cycle Management
Active Data at a Glance
Related Works

2 The Model and Implementation
Life-Cycle Model
Execution Runtime

3 Experiments
Performance Evaluation
Use Cases

4 Conclusion

G. Fedak (INRIA/UBC) Active Data Joint-Lab Workshop 20 / 22

Conclusion

Active Data, a programming model for supporting data life cycle management
applications
• formal definition of the data life cycle allows unified view of data across heterogeneous systems and

infrastructures
• runtime execution environment + API to publish transitions and execute transition handlers,
• low overhead (< 4%) and high transition throughput (> 30K/sec)
• ability to plug into legacy systems (data scheduler, file system, file transfer service, rule-based

management system)
• Evaluated with several complex use cases.

Future Works/Collaborations
• Model: advanced representation of computations; collective operations on data sets.
• Runtime: rollback mechanisms for fault-tolerant execution; distributed implementations of the

publish/subscribe substrate.
• Application leveraging Active Data: a MapReduce runtime for dynamic data, incremental and

asynchronous workflow (Swift/Mosastore)

G. Fedak (INRIA/UBC) Active Data Joint-Lab Workshop 21 / 22

Thank you !

G. Fedak (INRIA/UBC) Active Data Joint-Lab Workshop 22 / 22

	Introduction
	Challenges of Life-Cycle Management
	Active Data at a Glance
	Related Works

	The Model and Implementation
	Life-Cycle Model
	Execution Runtime

	Experiments
	Performance Evaluation
	Use Cases

	Conclusion

