Active Data: A Programming Model to Manage
Data Life Cycle Across Heterogeneous Systems
and Infrastructures

A. Simonet', G. Fedak', M. Ripeanu?

(1) {Anthony.Simonet, Gilles.Fedak}@inria.fr
INRIA, University of Lyon, France

(2) mateiRece.ubc.ca
University of British Columbia, Canada

The Ninth Workshop of the INRIA-lllinois Joint Laboratory
on Petascale Computing
June 12-14, 2013, Lyon, France

G. Fedak (INRIA/UBC) Active Data Joint-Lab Workshop

1/22

Outline of Topics

© Introduction
Challenges of Life-Cycle Management
Active Data at a Glance
Related Works

® The Model and Implementation
Life-Cycle Model
Execution Runtime

©® Experiments
Performance Evaluation
Use Cases

@ Conclusion

G. Fedak (INRIA/UBC) Active Data Joint-Lab Workshop 2/22

Outline

© Introduction
Challenges of Life-Cycle Management
Active Data at a Glance
Related Works

G. Fedak (INRIA/UBC) Active Data

Joint-Lab Workshop

3/22

Context: Data Deluge

e Huge and growing volume of information originating from multiple
sources.

G Youl{ID
®cbo o \
2 Technacs)

Q9D 9 O)'

wtscons T O onorazss

Big Science Instruments Simulations Internet Open Data

e Impacts many scientific disciplines and industry branches

e Large Scientific Instruments (LSST, LHC, OOQI), but not only (Sequencing
machines)

e Internet and Social Network (Google, Facebook, Twitter, etc.)

e Open Data (Open Library, Governemental, Genomics)

— impacts the whole process of scientific discovery (4" paradigm of science)

G. Fedak (INRIA/UBC) Active Data Joint-Lab Workshop 4/22

Big Data Challenges

e Big Data creates several challenges :
e how to scale the infrastructure ?
e end-to-end performance improvement, inter-system optimization.
e how to improve productivity of data-intensive scientist ?
o workflow, programming language, quality of data provenance.
e how to enable collaborative data science ?
e incentive for data publication, data-sets sharing, collaborative workflow.

e New models and software are needed to represent and manipulate large
and distributed scientific data-sets.

G. Fedak (INRIA/UBC) Active Data Joint-Lab Workshop 5/22

Focus on Data Life-Cycle

Data Life Cycle: the course of operational stages through which data pass
from the time when they enter a system to the time when they leave it.

O ', >0 /:nCaIstis

Acquisition Preprocessing Storage

Analysis

We're aiming at :

e A model to capture the essential life cycle stages and properties:
creation, deletion, faults, replication, error checking ...

o Allows legacy systems to expose their intrinsic data life cycle.

¢ Allow to reason about data sets handled by heterogeneous software and

infrastructures.

o Simplify the programming of applications that implement data life cycle
management.

G. Fedak (INRIA/UBC) Active Data Joint-Lab Workshop

6/22

Active Data at a Glance

e a life cycle model, inspired by Petri Net, which allows data management
systems to expose data life cycle through a well-formalized
representation

CREATED !

IY_’?WRITTEN

t
]

%ﬁi—j READ & pererep
ty

Figure: Representation of the
“Write-Once, Read-Many” data life
cycle.

G. Fedak (INRIA/UBC) Active Data Joint-Lab Workshop 7/22

Active Data at a Glance

e a programming model and a runtime environment, which allows to
program applications by specifying for each step of the data life cycle, the
code that will be executed.

TransitionHandler md5Handler = new ~,
—TransitionHandler () {
public void handler (LifeCycle lc, String ~
—transitionName , boolean isLocal) {
MessageDigest md = ~,
—MessageDigest . getInstance ("MD5”) ;

String path = getPath(lc.getld());
@—»I—» InputStream input = new ~
ﬂFllGInputStremm(path)
CREATED WRITTEN byte buffer[] — new byte[2048];
int n = 0;
whlle((n = input.read (buffer)) > 0)
t md. update (buffer, 0, n);

byte[] digest = md. d)g(.st()

/I,a
I_>O Biglnteger biglnt — new
& ~Biglnteger (1, digest);
Loop READ ™5 DeLeTED String hash = biglnt.toString (16);
whlle(hu;h length () < 32)
ty

hash = + hash
OutputStream output = new
Figure: Representation of the output. ‘v';?;;‘g’};{;gf'gg;“];;;;"() mdsn)s
“Write-Once, Read-Many” data life y oweureclose ()

cycle. b

G. Fedak (INRIA/UBC) Active Data Joint-Lab Workshop 7/22

Related Works

e Data-centric parallel programming languages (MapReduce, Dryad,
Allpairs, Twister, PigLatin ...)

¢ Runtime execution environments for dynamic data : incremental
processing (Percolator), parallel stream processing (Nephele,
MapReduce Online), workflow (Chimera)

e Event based processing (Mace, libasync, Incontext)

e Data Provenance addresses the issue of representation of data-set
derivation (PASS, Open Provenance Model)

o Data Management Software (BitDew, Chirp, MosaStore, Globus Online,
DCache, iRods and many more)

G. Fedak (INRIA/UBC) Active Data Joint-Lab Workshop 8/22

Outline

® The Model and Implementation
Life-Cycle Model

Execution Runtime

=] F = = A
G. Fedak (INRIA/UBC) Active Data

Life-Cycle Model: the Basics

e A Petri Netis a 5-tuple PN = (P, T, F, W, My) where:
e P = {CREATED, DELETED, p1, P2, ..., Pm} is a finite set of places;
o T={h,b,...,t.} is afinite set of transitions;

o Data items are represented by tokens e.
e W:F — N is a weight function which indicates how many tokens every

transition requires and how many token it produces.

G. Fedak (INRIA/UBC) Active Data Joint-Lab Workshop 10/22

Life-Cycle Model: the Basics

o Data Identification, we tag each token § with a triplet (id, i, p) where id is
a unique data identifier, identical for all the replica of a single data item, i
is the replica number and p € P is a place.

¢ Data Creation a data item is created as a token in the CREATED place
labelled with the triplet (id, 1, CREATED).

e Data Replication
s
N
' Q/g -

Figure: Data instance creation.

G. Fedak (INRIA/UBC) Active Data Joint-Lab Workshop 10/22

Composition of Life-Cycle Model

¢ Life Cycle Composition To compose two independent life cycles A and
B, we define the start places, Sap C Pa, and stop places, Sog C Pg.
e when one token reaches Say, it creates a new token in the place CREATED
of B. New tokens are labeled with the quadruplet (ida, ids, rs, gs)-

e When one token reaches Sog, it creates a new token in the place DELETED
of A.

G. Fedak (INRIA/UBC) Active Data Joint-Lab Workshop 11/22

Composition of Life-Cycle Model

¢ Life Cycle termination We say that a data item terminates its life cycle,
when all of its tokens reach the DELETED place.

e Composed Life Cycles Termination We say that a data item terminates
a composed life cycle, represented by A and B, their start sets Sas and
Sag, and stop sets So, and Sog, when it terminates A and terminates B.

G. Fedak (INRIA/UBC) Active Data Joint-Lab Workshop 11/22

Execution Runtime

Active Data is composed of two parts:

e the execution runtime
e manages data life cycles, publishes transitions, triggers handler code
executions, and guarantees execution correctness
o distributed system based on Publish/Subscribe

e the programming interface (API)
¢ allows data management systems to publish transitions
¢ allows programmers to develop applications by registering their transition

handlers
¢ two kinds of transition subscription :

e subscribe to a specific transition for any data items
e subscribe to a specific data item and being notified for any life cycle transitions.

G. Fedak (INRIA/UBC) Active Data Joint-Lab Workshop 12/22

Integration with Data Management Systems

Cr E.\'rx-,l h

2 "
CREATRD EADY

6 L7 by

Loor CoMPLETED -’ STARTED

(a) Bitdew Scheduler (b) Bitdew File Transfer (c) inotify

e BitDew (INRIA), programmable environment for
data management.

o inotify Linux kernel subsystem: notification system
for file creation, modification, write, movement and
deletion.

e iRODS (DICE, Univ. North Carolina), rule-oriented
data management system.

e Globus Online (ANL) offers fast, simple and
reliable service to transfer large volumes of data.

G. Fedak (INRIA/UBC) Active Data

CREATED

O

CREATED DELETED

(d) iRODS (e) Globus Online

Data scheduling and
replication

Fault tolerance

Composition of File Transfer
and Data Scheduler

Joint-Lab Workshop 13/22

Outline

©® Experiments

Performance Evaluation
Use Cases

=] F = = A
G. Fedak (INRIA/UBC) Active Data

Performance Evaluation

35,000~

N W
oo
o ©
S o
S o

20,000

15,000f

Transitions per second

10,000¢,

5,000

1IO 5I0 l(I)O 200 300 400 450 500 550
clients

Figure: Average number of transitions per second handled by the Active Data Service

med 907 centile | std dev
Latency | Local | 0.77 ms | 0.81 ms 18.68 ms
Eth. | 1.25 ms 1.45 ms 12.97 ms

w/o AD with AD
38.04 s 40.6 s (4.6%)

Overhead | Eth.

Table: Latency in milliseconds for life cycle creation and transition publication and
overhead measured using BitDew file transfers (1K files) with and without Active Data.

G. Fedak (INRIA/UBC) Active Data Joint-Lab Workshop 15/22

Amazon S3 Cache
Scenario: Caching Amazon S3

e evaluates the ability to rapidly
prototype a data management
application using Active Data
and BitDew.

o Write-through cache policy
expressed using life-cycle
transitions.

¢ evaluated using a pseudo

master-worker application (10

nodes, 200MB input)

o RO
Di_'l:u IN\,\J}I

3
COMPLETED STARTED

Figure: BitDew File Transfer

Difference ° t1 If Cache h/t, the handler

w cache w/o cache
In 2350 Mb | 2350 Mb 0 Mb serves the file from the cache;
Out 0.15 Mb 1976.17 Mb 1976.02 Mb 'f h . h h d|
FPuT 13 3) if cache miss, the handler gets
#Get 0 20 20 the file from Amazon S3
Dollars 0.3 0.53 0.23
e f; the handler transfers the
data item to Amazon S3 +
cache eviction policy.
G. Fedak (INRIA/UBC) Active Data Joint-Lab Workshop 16/22

Distributed Sensor Networks

o evaluates the ability to develop
distributed application based
on data life-cycle.

e sensors: images acquisition,
pre-processing, archiving to
centralized remote storage

¢ use Active Data to implement
distributed data throttling

[O TIF download [JConvertion to JPG [J JPG upload|

I I

I I

i R R, D O
\@] I I I I
@0 —T3 o o P
6 il . ol &P
I]]]] I
1® d | CJ | e | 0 |
0O | 0 > e 5O
o O o 0y | o !
o B—15 1O—85 | 0! ¢!
o 9 O—p v O B
0 30 60 90 120 150 180 210
G. Fedak (INRIA/UBC) Active Data

e lio: we check if the transition is
local or remote: if it is remote
we increment the local counter
p.

e [5: if the transition is local, we
upload the file only if p < n.

Joint-Lab Workshop 17/22

Incremental MapReduce
Scenario: Incremental MapReduce

o we investigate if an existing
system can be optimized by
leveraging on Active Data’s
ability to cope with dynamic
data.

o Making MapReduce
incremental : re-run map and
reduce tasks only for the data
input chunks that have
changed

¢ Evaluated using the word
count application (10 mappers,
5 reducers, 3.2 GB split in 200
chunks)

Implemented using
BitDew-MapReduce

Active Data notifies that a file
transfer is modifying an input
chunk. The Mapper Transition
handler flags the chunk as
dirty.

the mapper executes again the
map task on dirty chunk and
sends the updated
intermediate results to the
reducers.

Reducers proceed as usual to
compute again the final result.

Fraction modified | 20%
Update time 27%

40% | 60% | 80%
49% | 71% | 94%

G. Fedak (INRIA/UBC) Active Data

Joint-Lab Workshop 18/22

Data Provenance

Scenario: Data Provenance

o take advantage Active Data’s
unified view of data-sets over
heterogeneous systems.

o file transfers service (Globus
Online) + metadata catalog
(iRODS).

e query iRods and obtain file
transfer information :
endpoints, completion date,
request time

® To compose the two life cycles, the place
SucCEEDED from Globus Online is a start
place which creates a token in the iRODS
life cycle model.

G. Fedak (INRIA/UBC)

Active Data

DELETED m
|
h‘ T’ TZ
O],
4 Pur T e SUCCEEDED FAILED
Ormm-O 1 j
C o«
CREATED DELETED
(d) iRODS (e) Globus Online

® 1 a handler to store the file in iRODS. The
token now contains Globus Online and
iRods identifiers .

t5 the handler queries Globus Online to get
file transfer information and publish as
iRods meta-data.

Joint-Lab Workshop

19/22

Outline

@ Conclusion

o = = = DA
G. Fedak (INRIA/UBC) Active Data

Conclusion

Active Data, a programming model for supporting data life cycle management
applications

® formal definition of the data life cycle allows unified view of data across heterogeneous systems and
infrastructures

® runtime execution environment + API to publish transitions and execute transition handlers,
® |ow overhead (< 4%) and high transition throughput (> 30K/ sec)

® ability to plug into legacy systems (data scheduler, file system, file transfer service, rule-based
management system)

® Evaluated with several complex use cases.

Future Works/Collaborations
® Model: advanced representation of computations; collective operations on data sets.

® Runtime: rollback mechanisms for fault-tolerant execution; distributed implementations of the
publish/subscribe substrate.

® Application leveraging Active Data: a MapReduce runtime for dynamic data, incremental and
asynchronous workflow (Swift/Mosastore)

G. Fedak (INRIA/UBC) Active Data Joint-Lab Workshop 21/22

Thank you !

o = = = DA
G. Fedak (INRIA/UBC) Active Data

	Introduction
	Challenges of Life-Cycle Management
	Active Data at a Glance
	Related Works

	The Model and Implementation
	Life-Cycle Model
	Execution Runtime

	Experiments
	Performance Evaluation
	Use Cases

	Conclusion

