
Resilience at Exascale

Marc Snir

Director, Mathematics and
Computer Science Division

Argonne National
Laboratory

Professor, Dept. of
Computer Science, UIUC

Problem

• Exascale resilience is “a black swan – the most difficult,
under-addressed issue facing HPC.” (ASCAC 2011)

• Fear: a Exaflop/s system will fail so frequently that no useful
work will be possible

• DOE & DoD commissioned several reports

– Inter-Agency Workshop on HPC Resilience at Extreme

Scale

http://institute.lanl.gov/resilience/docs/Inter-
AgencyResilienceReport.pdf (Feb 2012)

– U.S. Department of Energy Fault Management Workshop

http://shadow.dyndns.info/publications/
geist12department.pdf (June 2012)

– …

�2

Addressing Failures in Exascale Computing

• Week-long workshop summer 2012

M. Snir, R. W. Wisniewski, J. A. Abraham, S. V. Adve, S.
Bagchi, P. Balaji, J. Belak, P. Bose, F. Cappello, B. Carlson, A.
A. Chien, P. Coteus, N. A. Debardeleben, P. Diniz, C.
Engelmann, M. Erez, S. Fazzari, A. Geist, R. Gupta, F.
Johnson. S. Krishnamoorthy, S. Leyffer, D. Liberty, S. Mitra, T.
Munson, R. Schreiber, J. Stearley, E. V. Hensbergen

• Argonne Report ANL/MCS-TM-332, April 2013.

http://www.mcs.anl.gov/uploads/cels/papers/ANL:MCS-
TM-332.pdf

�3

SUPERCOMPUTING TODAY

�4

Argonne Mira (IBM -- Blue Gene/Q)

• 48K nodes

– 1.6 GHz 16-way core

– 16 GB RAM

• 768K cores

• 0.768 PB DRAM

• 35 PB Disk storage

– 240 GB/s bandwidth

• 10 Petaflop/s (1016 flop/s) peak
performance

• LLNL Sequoia is Mira×2

�5

Oak Ridge Titan

• 18,688 nodes

– 2.2 GHz AMD 16-core

Opteron 6274 processor

– 32GB DRAM

• 18,688 GPUs

– NVIDIA Kepler K20

– 6 GB DRAM

• 299K CPU cores

• 0.71 PB DRAM

• 20 Petaflop/s peak
performance

�6

How Reliable Are They?

• MTBF of 1-7 days (failure = lost job)

– Global system crashes ~1/10 of errors

– This does not account for failures due to bugs in

user code!

• 60%-80% of failures are due to software

– Mostly in the parallel file system

– Mostly “performance bugs” (thrashing, time-outs)

• Many complex, cascading errors

– Root cause analysis is imperfect and very time

consuming

• No Byzantine errors

• No silent errors (??)

�7

How do we Handle Failures?

• System: Reboot, repair

– MTTR: 3-24 hours

• Application: Checkpoint, restart

– User checkpoint/restart

– ~15-20 minutes checkpoint or restart

• Optimal checkpoint interval

• Chkpt = 15 min, MTBF = 24 hrs => Util ≈ 85%

�8

Utilization, Assuming Poisson Failure Model

�9

Chckpt/MTBF

Core Assumptions

• Checkpoint time << MTBF (~MTBF/100)

• Recovery time < MTBF (~MTBF/10)

• Errors are detected quickly and are not Byzantine

�10

SUPERCOMPUTING IN 10 YEARS

�11

Exascale Design Point

Systems 2012

BG/Q

2020-2024 Difference

Today & 2019

System peak 20 Pflop/s 1 Eflop/s O(100)

Power 8.6 MW ~20 MW

System memory 1.6 PB
(16*96*1024)

32 - 64 PB O(10)

Node performance 205 GF/s

(16*1.6GHz*8)

1.2 or 15TF/s O(10) – O(100)

Node memory BW 42.6 GB/s 2 - 4TB/s O(1000)

Node concurrency 64 Threads O(1k) or 10k O(100) – O(1000)

Total Node Interconnect BW 20 GB/s 200-400GB/s O(10)

System size (nodes) 98,304
(96*1024)

O(100,000) or O(1M) O(100) – O(1000)

Total concurrency 5.97 M O(billion) O(1,000)

MTTI 4 days O(<1 day) - O(10)

Both price and power envelopes may be too aggressive!

Going Forward: Risks

• More complex application codes -> more user errors

• More complex system codes -> more “logic” system errors

– power management, error handling, asynchronous
algorithms, dynamic resource provisioning, complex
workflows…

• Larger system -> more “performance” system errors

• More hardware -> more hardware errors

• More failure-prone hardware -> More hardware errors

– Smaller feature size -> more variance, faster aging

– Sub-threshold logic -> more bit upsets, more multiple-bit

upsets

�13

RESILIENCE AT EXASCALE

�14

Core Assumptions

• Checkpoint time << MTBF (~MTBF/100)

• Recovery time < MTBF (~MTBF/10)

• Errors are detected quickly and are not Byzantine

�15

Silent Data Corruption

• Reasonably well studied: Impact of cosmic radiation

• Reasonably easy to protect: DRAM, SRAM, regular arrays

of storage)

– Add more ECC bits and interleave

• Hard to protect: random logic (decoders, ALUs…)

• However:

– Most (>99%) bit flips have no effect (our HW is
inefficient?)

– Effect is often a hard SW failure

�16

Hardware Error Detection: Assumptions

�17

Hardware Error Detection: Analysis

�18

Summary of (Rough) Analysis

• If no new technology is deployed can have up to one
undetected error per hour

• With additional circuitry could get down to one undetected
error per 100-1,000 hours (week – months)

– Similar to what we have now!

• With no new invention, cost is about 20% additional circuits
and 25% additional power

– New invention may reduce overhead

• Not clear required components will be available at low cost

– Market for highly reliable servers is not growing

– Fastest growing markets (mobile, consumer products,

clouds) requires low power & low cost but do not require
high availability

�19

SW Alternatives to HW Error Detection

• Replicate execution (for critical, rarely executed code – e.g., system
code)

– Can cost << x2, with architecture/compiler support (assuming
memory is trusted)

• Add (via compilation) program level property checks

– SWAT project (S. Adve): 85% coverage of SDCs with 10% overhead

• Add error detection to application code (e.g., redundancy in dense
linear algebra)

• Develop fault-tolerant algorithms

• Hypothesis: bit flips

– Either destroy the compute model abstraction (wrong pointers,
wrong jump addresses) – and can very often be detected

– Or can be treated as noise in the computation – and handled
algorithmically

�20

Core Assumptions

• Checkpoint time << MTBF (~MTBF/100)

• Recovery time < MTBF (~MTBF/10) [<< 1 hour]

• Errors are detected quickly and are not Byzantine

�21

Recovery Time

• Localized failure (e.g., node failure)

– Replace node and restart application from checkpoint –

seconds – minutes

• Global system crash

– Switch, parallel file system, resource manager,
monitoring & control SW…

– Often combination of HW failure and SW “performance
bug”

– May take hours to recover

• Need global OS services that are more resilient or recover

much faster (OS/R proposal)

– APIs for resilience (reliable execution, reliable storage)

– Hierarchical error handling (fault containment)

– Reliable pub-sub service for reliability-related events

�22

Core Assumptions

• Checkpoint time << MTBF (~MTBF/100) [< 1 min]

• Recovery time < MTBF (~MTBF/10)

• Errors are detected quickly and are not Byzantine

�23

Hybrid Checkpoint

• Fast, frequent checkpoints to take care of frequent failures;
slower, less frequent checkpoint to take care of less frequent
failures

• Checkpoint in memory: handles transient errors

– Seconds; need more memory (~50%) but no significant

additional power

• Checkpoint in NVRAM memory: can handle node failure, if

“twin tailed”

• Checkpoint in memory + RAID5 – handle node failures

– ~3 minutes; ~50% more memory

• Checkpoint in remote NVRAM (“burst buffers”)

• Checkpoint on disk

• Doable – but may be expensive and may be hard if node

memory is much larger (LBNL, ANL)

�24

Avoid Global Checkpoints

• Cluster checkpoint + logging

– Can avoid domino effect of uncoordinated checkpoints

for send-deterministic apps

• Save energy and recovery time

• Containment domains

• Algorithmic error correction

– Use redundancy in computation state

• …

• Are these techniques general?

�25

MCS -- Marc SnirJune 13
�26

Bring SW
faults under
control

Better understand
current/future
sources of error

SDC?

LIFE is HARD

YES NO

Current checkpoint/
restart works OK (?)

• Need hybrid
checkpointing)

Fancier solutions
could save compute
time, power & HW cost

Life with SDCs

• Build system SW immune to SDCs or build build good
detectors and fast repair

• Build middleware (compilers, run-time) that can detect and
correct “abstraction breaking” SDCs in user code

• Built application SW that detects SDCs in data or can
tolerate them

• Build infrastructure to compose everything

�27

�28

The End

