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Context and motivations
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Main Motivation

E↵ective fault tolerance actions scheduling in HPC.

Challenge

Advanced models to shape the failures occurrences in HPC.
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Context and motivations

Motivations

Main Motivation

E↵ective and e�cient combination between proactive and preventive fault
tolerance strategies.

Challenges

checkpoint interval selection problem.

energy consumption.

IO optimization.

etc..

Objective

Advanced models to shape the relation between the occurrences of failures
and the failure prediction mechanisms in HPC.
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Failure prediction terminology and concepts

Let’s remember ELSA

Blue Waters

Let’s remember ELSA

INRIA/ANL/UIUC  Joint Lab – Nov’12 12

Log DB

ELSA
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Failure prediction terminology and concepts

Proactive and preventive fault tolerance

Prediction is feasible

ELSA: Signal analysis with data mining:
90% precision and 45% recall.
At least 10 seconds of lead-time.
Failure location is provided.

Fast checkpointing strategies exist

FTI (Fault Tolerance Interface):
Capable of taking a checkpoint in 5s for 1GB memory.
Multi-level checkpoint with 8% overhead.
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Failure prediction terminology and concepts

Online failure prediction terminology

Terminology

True positive alert (correct prediction)

False positive alert (misleading prediction)

False negative alert (the failure was not predicted)

Metric

Recall:
#True positive

#True positive + #False negative

Precision:
#True positive

#True positive + #False positive

slim.bouguerra@imag.fr (INRIA) Resilience and reliability of HPC systems Joint Lab workshop June 2013 8



Failure prediction terminology and concepts

Online failure prediction terminology

Terminology

True positive alert (correct prediction)

False positive alert (misleading prediction)

False negative alert (the failure was not predicted)

Metric

Recall:
#True positive

#True positive + #False negative

Precision:
#True positive

#True positive + #False positive

slim.bouguerra@imag.fr (INRIA) Resilience and reliability of HPC systems Joint Lab workshop June 2013 8



Failure prediction terminology and concepts

What is Modeled ?

Main focus

The distribution of interval of time that separates false negative alerts.

The relation between the original failure distribution and the obtained
false negative distribution (relation between Yi and Ui )
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Data source and characteristics

Data characteristics

22 High performance computing systems from Los Alamos National
Lab.

December 1996 - November 2005.
Di↵erent architectures and sizes.
433,490 per system.
MTBF, 13 to 215 hours.
Failures are manually annotated.

BlueGene/L at Lawrence Livermore National Lab.
June 2005 - january 2006.
128K PowerPc 440 processors.
4,747,963 events.
MTBF 24h.
Anomaly detection technique.
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Data source and characteristics

Failure prediction characteristics
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Modeling and fitting methodology
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Methodology

Methodology: Randomness Test

Method:

Runs test

Runs up/down test

Autocorrelation function test (ACF)
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Methodology

Randomness tests output

Table: Randomness tests P-values

System name Failures False negative
# lines Runs test Up/Down test # lines Runs test Up/Down test

Blue Gene/L 235 0.11 0.17 129 0.70 0.97
LANL Sys 2 1951 0.01 0.17 1172 0.01 0.86
LANL Sys 3 294 0.08 0.73 158 0.36 0.92
LANL Sys 4 298 0.75 0.42 163 0.15 0.83
LANL Sys 5 304 0.51 0.95 158 0.83 0.59
LANL Sys 6 63 1.00 0.88 32 0.69 1.00
LANL Sys 8 436 0.30 0.03 270 0.69 0.48
LANL Sys 9 279 0.01 0.23 172 0.01 0.10
LANL Sys 10 234 0.22 0.72 122 0.07 0.13
LANL Sys 11 266 0.01 0.56 154 0.11 0.63
LANL Sys 12 255 0.01 0.19 154 0.01 0.02
LANL Sys 13 194 0.04 0.74 123 0.80 0.53
LANL Sys 14 120 0.06 0.36 75 0.49 0.17
LANL Sys 15 53 0.01 0.87 32 0.50 0.51
LANL Sys 16 245 0.04 0.98 159 0.62 0.97
LANL Sys 18 3917 0.01 0.01 2195 0.66 0.74
LANL Sys 19 3235 0.03 0.54 1785 0.08 0.86
LANL Sys 20 2400 0.01 0.14 1310 0.01 0.85
LANL Sys 21 105 0.02 0.01 76 0.39 0.96
LANL Sys 22 17 not enough lines
LANL Sys 23 226 0.32 0.41 129 0.15 0.55
LANL Sys 24 23 not enough lines
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To explain more this result and to study the impact of the
non randomness on the prediction process, we show in figure
3 the autocorrelation values using the first lag. Horizontal lines
in figure 3 represent the 95% confidence interval. The auto-
correlation test reveals also that most of the data concerning
the failures intervals overpass the confidence interval. This
confirms that failures traces are not truly random and contain
high correlation. This confirms also previous studies [14], [28]
that report the existence of high correlation between failures.
Same as for runs and up/down tests, after using the failures
prediction, the false negative traces are truly random except
for few systems.
Figure 3 revels that the set of systems 9, 10, 11, 12, 13, 14 and
15 present a high correlation. This can be explained by the fact
that those clusters have the same hardware type denoted by the
type F in [28]. Among this set of systems the correlation is
different due to difference in terms of system size. One would
expect that the bigger the size is the higher is the correlation
but this is not true. In fact the smallest clusters 9, 10 and 12
have the highest correlation.

Bars in figure V-A2 represent the recall ratio for the
different computing systems. This figure point out another
important finding. The recall ratio is related to the amount
of correlations that the traces contain. For instance for the
system 21 that has a smaller recall, figure 3 indicates that it
has also the smallest amount of correlations. We have the same
observation for system 10, again the recall is high and it has
the highest amount of correlation. Figure V-A2 reveal also
we can still get high recall even if the trace does not contain
a high correlation of order one like for example the system
6 that has the highest recall and a small correlation value.
Considering that a trace is random only and only if it passes
the three tests, only 6 out of 20 computing system with a truly
random failure sequence that can be used to infer statistical
model to describe mathematically the arrival time of failures.
We note that for the systems with non true randomness no
failures distribution could be estimated, thus there is no way to
use fault tolerance strategies like [5], [33], [1], [21] to compute
the optimal interval between checkpoints. One solution could
be to change the scale and consider failures on the node level
to insulate the nodes with high correlation. Also failures with
truly randomness behavior lead to a false negative samples
truly randomly distributed. The important finding is, thanks to
the failure prediction mechanism that catches the failures with
periodic patterns and correlation we can infer statistical models
that describes the inter arrival time between false negative
alerts for 15 out of 20 computing systems.

The lack of correlation between figure 3 and V-A2, influ-
enced us to implement a statistical based prediction method,
similar to the one from [6] which uses the failure distribution
for each of the analyzed systems. Statistical based methods
emphasize on discovering probabilistic characteristics among
failure events and then using the obtained characteristics for
failure prediction. Our method basically uses two steps, in the
offline phase it obtains and verifies statistical characteristics of
failures, for example temporal correlations from the training
data and in the online phase it produces a warning if statistical
patterns are observed.

The results are closely related to the amount of correlation
between inter-arrival time of failures in the LANL traces. Fig-
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Fig. 5. Recall for the statistical based prediction method

ure 5 presents how statistical based methods can complement
our correlation based prediction and what is the impact on the
recall value for the LANL systems.

It is clear that system 9 presents a strong correlation
between failures and as a consequence the prediction technique
offers high recall values. In some cases, systems that do not
have a strong correlation are misinterpret by the prediction
technique and so are creating a large number of false positives,
decreasing the overall precision. This is the case of system
8 where the statistical based method discovers several week
false correlations that are later used for false predictions. For
escaping this problem, we decided to only keep very strong
predictions and filter the rest. Figure 5 presents only the
systems that have string correlations and as a results the gain
in recall outperforms the loss in precision.

At a closer examination, we observed that the failure pre-
dicted by the statistical based prediction method overlaps with
some of our original predictions. Moreover, the introduction of
the new predictor does not change the shape of the recall from
figure V-A2 and the improvement in recall does not exceed
15%. This observation lead us to an important conclusion,
specifically that the statistical based prediction technique is
not universal and provides different results depending on the
system. Techniques like the one in [6] can only be used for
systems with high correlations for the failure inter-arrival time
and their results are very specific to the system they analyze.

B. Distribution fitting

The objective here is first to infer a mathematical model
that can be used to describe formally the inter arrival time
between failures and false negative alerts. Secondly we inves-
tigate the relationship between the failures distribution without
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prediction and the probability distribution of the false nega-
tive alerts. As mention before, only traces with true random
behaviors are relevant to be used to find a good probability
distribution that is a good match to the empirical distribution.

1) Fitting methodology : Different methods are available to
fit the empirical data to probability distribution functions. The
most common methodology is to first select a set of candi-
date distributions. Then to estimate the values of distribution
parameters based on the empirical distribution and keep the
best one. Many distributions could be used as input candidate
in step 1. In this work we conduct the distribution fitting
process using the common used distribution functions to model
failures in HPC systems [15], [14], [28], namely exponential,
weibull, Log-normal, normal and gamma. As noted before
in the second step we compute the best parameter values
for each candidate distribution. In step 2 we look for the
maximum likelihood estimates (MLE) [23] that are the most
likely fit to the empirical data. We choose this method rather
than using the moment matching method since this method is
sensitive to outliers [8]. Technically, MLE aims to maximize
logarithm of the likelihood function that corresponds to the
closet distance between the empirical distribution and samples
resulted from distribution with certain parameters. We use the
Negative log likelihood value produced by the MLE to rank
the different distributions. This still does not means that this
given distribution is a good model for the empirical data. Thus
we check also the goodness of fit between the data sample and
synthetic sample. Literature describes dozens of goodness-of-
fit tests, but only a handful are used in practice. We use the
Kolmogorov-Smirnov [24] test and the standard probability-
probability PP plot as a visual method. The Kolmogorov-
Smirnov test checks that the sample comes from the best
fitted distribution, against the alternative that it does not come
from the late distribution. Also here the test rejects the true
randomness hypothesis at the 5% significance level.

2) Fitting results: We first investigate the statistical model
for clusters with a true random behavior for both failures
and false negative alerts. Then we consider traces that fail
to pass the randomness test for failures intervals and pass the
randomness test for false negative intervals. We use the second
time scale to estimate the failure distribution parameter. Table
VI reports the fitting results concerning the first set of data
where both intervals are truly random. As we can see not all
the probability distribution are present, but exponential and
weibull are the closet fit to the available data.

We note that the parameter µ is the mean in seconds
for the exponential distribution. For the weibull parameter
a denotes the scale and b denotes the shape parameter. The
exponential distribution is a good fit for the date with a
coefficient of variation (CV) [20] close to one. This is an
expected results since the CV of the exponential distribution
is equal to one, hence if the sample is taken from exponential
random variables, its CV should be close to one as well. For
the data with a high variation Weibull is the best fit. We notice
also that systems either have a constant failure rate for the
exponential case or strictly decreasing failure rate since all the
shape parameters are lower than one for the Weibull case.

The second outcome form this study is the relationship
between the initial failure distribution and the false negative
distribution function. In fact as it can been seen in table
VI the best fitted distribution for the data concerning the
false negative alerts is the same distribution for the failures
intervals with different parameters. Hence, intuitively we can
say that the failure prediction process does not change the
initial distribution and it affects only the scale parameters of
the initial distribution. Also we can notice that for case where
the distribution is exponential the ratio between the initial
parameter µu and the false negative parameter µy is given
by µy/µu ⇡ 1 � r where r is the recall. Same for Weibull,
we have approximately the same shape parameter for both



Methodology

Randomness tests output

Table: Randomness tests P-values

System name Failures False negative
# lines Runs test Up/Down test # lines Runs test Up/Down test

Blue Gene/L 235 0.11 0.17 129 0.70 0.97
LANL Sys 2 1951 0.01 0.17 1172 0.01 0.86
LANL Sys 3 294 0.08 0.73 158 0.36 0.92
LANL Sys 4 298 0.75 0.42 163 0.15 0.83
LANL Sys 5 304 0.51 0.95 158 0.83 0.59
LANL Sys 6 63 1.00 0.88 32 0.69 1.00
LANL Sys 8 436 0.30 0.03 270 0.69 0.48
LANL Sys 9 279 0.01 0.23 172 0.01 0.10
LANL Sys 10 234 0.22 0.72 122 0.07 0.13
LANL Sys 11 266 0.01 0.56 154 0.11 0.63
LANL Sys 12 255 0.01 0.19 154 0.01 0.02
LANL Sys 13 194 0.04 0.74 123 0.80 0.53
LANL Sys 14 120 0.06 0.36 75 0.49 0.17
LANL Sys 15 53 0.01 0.87 32 0.50 0.51
LANL Sys 16 245 0.04 0.98 159 0.62 0.97
LANL Sys 18 3917 0.01 0.01 2195 0.66 0.74
LANL Sys 19 3235 0.03 0.54 1785 0.08 0.86
LANL Sys 20 2400 0.01 0.14 1310 0.01 0.85
LANL Sys 21 105 0.02 0.01 76 0.39 0.96
LANL Sys 22 17 not enough lines
LANL Sys 23 226 0.32 0.41 129 0.15 0.55
LANL Sys 24 23 not enough lines

slim.bouguerra@imag.fr (INRIA) Resilience and reliability of HPC systems Joint Lab workshop June 2013 15

To explain more this result and to study the impact of the
non randomness on the prediction process, we show in figure
3 the autocorrelation values using the first lag. Horizontal lines
in figure 3 represent the 95% confidence interval. The auto-
correlation test reveals also that most of the data concerning
the failures intervals overpass the confidence interval. This
confirms that failures traces are not truly random and contain
high correlation. This confirms also previous studies [14], [28]
that report the existence of high correlation between failures.
Same as for runs and up/down tests, after using the failures
prediction, the false negative traces are truly random except
for few systems.
Figure 3 revels that the set of systems 9, 10, 11, 12, 13, 14 and
15 present a high correlation. This can be explained by the fact
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for each of the analyzed systems. Statistical based methods
emphasize on discovering probabilistic characteristics among
failure events and then using the obtained characteristics for
failure prediction. Our method basically uses two steps, in the
offline phase it obtains and verifies statistical characteristics of
failures, for example temporal correlations from the training
data and in the online phase it produces a warning if statistical
patterns are observed.

The results are closely related to the amount of correlation
between inter-arrival time of failures in the LANL traces. Fig-
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ure 5 presents how statistical based methods can complement
our correlation based prediction and what is the impact on the
recall value for the LANL systems.

It is clear that system 9 presents a strong correlation
between failures and as a consequence the prediction technique
offers high recall values. In some cases, systems that do not
have a strong correlation are misinterpret by the prediction
technique and so are creating a large number of false positives,
decreasing the overall precision. This is the case of system
8 where the statistical based method discovers several week
false correlations that are later used for false predictions. For
escaping this problem, we decided to only keep very strong
predictions and filter the rest. Figure 5 presents only the
systems that have string correlations and as a results the gain
in recall outperforms the loss in precision.

At a closer examination, we observed that the failure pre-
dicted by the statistical based prediction method overlaps with
some of our original predictions. Moreover, the introduction of
the new predictor does not change the shape of the recall from
figure V-A2 and the improvement in recall does not exceed
15%. This observation lead us to an important conclusion,
specifically that the statistical based prediction technique is
not universal and provides different results depending on the
system. Techniques like the one in [6] can only be used for
systems with high correlations for the failure inter-arrival time
and their results are very specific to the system they analyze.

B. Distribution fitting

The objective here is first to infer a mathematical model
that can be used to describe formally the inter arrival time
between failures and false negative alerts. Secondly we inves-
tigate the relationship between the failures distribution without
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prediction and the probability distribution of the false nega-
tive alerts. As mention before, only traces with true random
behaviors are relevant to be used to find a good probability
distribution that is a good match to the empirical distribution.

1) Fitting methodology : Different methods are available to
fit the empirical data to probability distribution functions. The
most common methodology is to first select a set of candi-
date distributions. Then to estimate the values of distribution
parameters based on the empirical distribution and keep the
best one. Many distributions could be used as input candidate
in step 1. In this work we conduct the distribution fitting
process using the common used distribution functions to model
failures in HPC systems [15], [14], [28], namely exponential,
weibull, Log-normal, normal and gamma. As noted before
in the second step we compute the best parameter values
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To explain more this result and to study the impact of the
non randomness on the prediction process, we show in figure
3 the autocorrelation values using the first lag. Horizontal lines
in figure 3 represent the 95% confidence interval. The auto-
correlation test reveals also that most of the data concerning
the failures intervals overpass the confidence interval. This
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a high correlation of order one like for example the system
6 that has the highest recall and a small correlation value.
Considering that a trace is random only and only if it passes
the three tests, only 6 out of 20 computing system with a truly
random failure sequence that can be used to infer statistical
model to describe mathematically the arrival time of failures.
We note that for the systems with non true randomness no
failures distribution could be estimated, thus there is no way to
use fault tolerance strategies like [5], [33], [1], [21] to compute
the optimal interval between checkpoints. One solution could
be to change the scale and consider failures on the node level
to insulate the nodes with high correlation. Also failures with
truly randomness behavior lead to a false negative samples
truly randomly distributed. The important finding is, thanks to
the failure prediction mechanism that catches the failures with
periodic patterns and correlation we can infer statistical models
that describes the inter arrival time between false negative
alerts for 15 out of 20 computing systems.

The lack of correlation between figure 3 and V-A2, influ-
enced us to implement a statistical based prediction method,
similar to the one from [6] which uses the failure distribution
for each of the analyzed systems. Statistical based methods
emphasize on discovering probabilistic characteristics among
failure events and then using the obtained characteristics for
failure prediction. Our method basically uses two steps, in the
offline phase it obtains and verifies statistical characteristics of
failures, for example temporal correlations from the training
data and in the online phase it produces a warning if statistical
patterns are observed.

The results are closely related to the amount of correlation
between inter-arrival time of failures in the LANL traces. Fig-
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ure 5 presents how statistical based methods can complement
our correlation based prediction and what is the impact on the
recall value for the LANL systems.

It is clear that system 9 presents a strong correlation
between failures and as a consequence the prediction technique
offers high recall values. In some cases, systems that do not
have a strong correlation are misinterpret by the prediction
technique and so are creating a large number of false positives,
decreasing the overall precision. This is the case of system
8 where the statistical based method discovers several week
false correlations that are later used for false predictions. For
escaping this problem, we decided to only keep very strong
predictions and filter the rest. Figure 5 presents only the
systems that have string correlations and as a results the gain
in recall outperforms the loss in precision.

At a closer examination, we observed that the failure pre-
dicted by the statistical based prediction method overlaps with
some of our original predictions. Moreover, the introduction of
the new predictor does not change the shape of the recall from
figure V-A2 and the improvement in recall does not exceed
15%. This observation lead us to an important conclusion,
specifically that the statistical based prediction technique is
not universal and provides different results depending on the
system. Techniques like the one in [6] can only be used for
systems with high correlations for the failure inter-arrival time
and their results are very specific to the system they analyze.

B. Distribution fitting

The objective here is first to infer a mathematical model
that can be used to describe formally the inter arrival time
between failures and false negative alerts. Secondly we inves-
tigate the relationship between the failures distribution without
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Table: Statistical fitting all random (fitting parameters scale are in seconds)

System name Failures False negative
Mean CV Best Fit KS Mean CV Best Fit KS

Blue Gene/L 1040.5 0.92 exponential µ = 62431.3 0.10 1888.1 1.10 exponential µ = 113289 0.79
LANL Sys 3 3595.1 1.1 exponential µ = 215705 0.98 6559.0 1.1 exponential µ = 393538 0.70
LANL Sys 4 3409.1 1.1 exponential µ = 204544 0.77 6187.0 1.1 exponential µ = 371218 0.99
LANL Sys 5 3294.5 1.1 exponential µ = 197671 0.95 6377.9 1.2 exponential µ = 382671 0.35
LANL Sys 6 16796.7 0.9 exponential µ = 1007800 0.81 31878.2 1.1 exponential µ = 1912690 0.99
LANL Sys 23 9288.2 1.3 weibull a = 509380 b = 0.846905 0.97 16272.3 1.2 weibull a = 895274 b = 0.851258 0.98

Table: Statistical Fitting false negative random

System name False negative
Mean CV Best Fit KS

LANL Sys 8 7859.6 1.4 weibull a = 401499 b = 0.767798 0.74
LANL Sys 10 8247.0 3.6 weibull a = 318087 b = 0.647838 0.29
LANL Sys 11 6353.5 3.0 weibull a = 232647 b = 0.609348 0.61
LANL Sys 13 8164.3 3.9 lognormal µ = 11.5257 � = 1.87004 0.14
LANL Sys 14 11351.0 2.5 weibull a = 391931 b = 0.559039 0.77
LANL Sys 15 12136.7 1.2 exponential µ = 728203 0.17
LANL Sys 16 3430.6 1.3 weibull a = 182624 b = 0.810939 0.69
LANL Sys 18 818.6 1.5 lognormal µ = 10.1123 � = 1.28677 0.37
LANL Sys 19 863.6 1.4 exponential µ = 29000.5 0.18
LANL Sys 21 1986.9 2.3 lognormal µ = 10.6382 � = 1.46402 0.85
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To explain more this result and to study the impact of the
non randomness on the prediction process, we show in figure
3 the autocorrelation values using the first lag. Horizontal lines
in figure 3 represent the 95% confidence interval. The auto-
correlation test reveals also that most of the data concerning
the failures intervals overpass the confidence interval. This
confirms that failures traces are not truly random and contain
high correlation. This confirms also previous studies [14], [28]
that report the existence of high correlation between failures.
Same as for runs and up/down tests, after using the failures
prediction, the false negative traces are truly random except
for few systems.
Figure 3 revels that the set of systems 9, 10, 11, 12, 13, 14 and
15 present a high correlation. This can be explained by the fact
that those clusters have the same hardware type denoted by the
type F in [28]. Among this set of systems the correlation is
different due to difference in terms of system size. One would
expect that the bigger the size is the higher is the correlation
but this is not true. In fact the smallest clusters 9, 10 and 12
have the highest correlation.

Bars in figure V-A2 represent the recall ratio for the
different computing systems. This figure point out another
important finding. The recall ratio is related to the amount
of correlations that the traces contain. For instance for the
system 21 that has a smaller recall, figure 3 indicates that it
has also the smallest amount of correlations. We have the same
observation for system 10, again the recall is high and it has
the highest amount of correlation. Figure V-A2 reveal also
we can still get high recall even if the trace does not contain
a high correlation of order one like for example the system
6 that has the highest recall and a small correlation value.
Considering that a trace is random only and only if it passes
the three tests, only 6 out of 20 computing system with a truly
random failure sequence that can be used to infer statistical
model to describe mathematically the arrival time of failures.
We note that for the systems with non true randomness no
failures distribution could be estimated, thus there is no way to
use fault tolerance strategies like [5], [33], [1], [21] to compute
the optimal interval between checkpoints. One solution could
be to change the scale and consider failures on the node level
to insulate the nodes with high correlation. Also failures with
truly randomness behavior lead to a false negative samples
truly randomly distributed. The important finding is, thanks to
the failure prediction mechanism that catches the failures with
periodic patterns and correlation we can infer statistical models
that describes the inter arrival time between false negative
alerts for 15 out of 20 computing systems.

The lack of correlation between figure 3 and V-A2, influ-
enced us to implement a statistical based prediction method,
similar to the one from [6] which uses the failure distribution
for each of the analyzed systems. Statistical based methods
emphasize on discovering probabilistic characteristics among
failure events and then using the obtained characteristics for
failure prediction. Our method basically uses two steps, in the
offline phase it obtains and verifies statistical characteristics of
failures, for example temporal correlations from the training
data and in the online phase it produces a warning if statistical
patterns are observed.

The results are closely related to the amount of correlation
between inter-arrival time of failures in the LANL traces. Fig-
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ure 5 presents how statistical based methods can complement
our correlation based prediction and what is the impact on the
recall value for the LANL systems.

It is clear that system 9 presents a strong correlation
between failures and as a consequence the prediction technique
offers high recall values. In some cases, systems that do not
have a strong correlation are misinterpret by the prediction
technique and so are creating a large number of false positives,
decreasing the overall precision. This is the case of system
8 where the statistical based method discovers several week
false correlations that are later used for false predictions. For
escaping this problem, we decided to only keep very strong
predictions and filter the rest. Figure 5 presents only the
systems that have string correlations and as a results the gain
in recall outperforms the loss in precision.

At a closer examination, we observed that the failure pre-
dicted by the statistical based prediction method overlaps with
some of our original predictions. Moreover, the introduction of
the new predictor does not change the shape of the recall from
figure V-A2 and the improvement in recall does not exceed
15%. This observation lead us to an important conclusion,
specifically that the statistical based prediction technique is
not universal and provides different results depending on the
system. Techniques like the one in [6] can only be used for
systems with high correlations for the failure inter-arrival time
and their results are very specific to the system they analyze.

B. Distribution fitting

The objective here is first to infer a mathematical model
that can be used to describe formally the inter arrival time
between failures and false negative alerts. Secondly we inves-
tigate the relationship between the failures distribution without
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Table: Statistical fitting all random (fitting parameters scale are in seconds)

System name Failures False negative
Mean CV Best Fit KS Mean CV Best Fit KS

Blue Gene/L 1040.5 0.92 exponential µ = 62431.3 0.10 1888.1 1.10 exponential µ = 113289 0.79
LANL Sys 3 3595.1 1.1 exponential µ = 215705 0.98 6559.0 1.1 exponential µ = 393538 0.70
LANL Sys 4 3409.1 1.1 exponential µ = 204544 0.77 6187.0 1.1 exponential µ = 371218 0.99
LANL Sys 5 3294.5 1.1 exponential µ = 197671 0.95 6377.9 1.2 exponential µ = 382671 0.35
LANL Sys 6 16796.7 0.9 exponential µ = 1007800 0.81 31878.2 1.1 exponential µ = 1912690 0.99
LANL Sys 23 9288.2 1.3 weibull a = 509380 b = 0.846905 0.97 16272.3 1.2 weibull a = 895274 b = 0.851258 0.98

Table: Statistical Fitting false negative random

System name False negative
Mean CV Best Fit KS

LANL Sys 8 7859.6 1.4 weibull a = 401499 b = 0.767798 0.74
LANL Sys 10 8247.0 3.6 weibull a = 318087 b = 0.647838 0.29
LANL Sys 11 6353.5 3.0 weibull a = 232647 b = 0.609348 0.61
LANL Sys 13 8164.3 3.9 lognormal µ = 11.5257 � = 1.87004 0.14
LANL Sys 14 11351.0 2.5 weibull a = 391931 b = 0.559039 0.77
LANL Sys 15 12136.7 1.2 exponential µ = 728203 0.17
LANL Sys 16 3430.6 1.3 weibull a = 182624 b = 0.810939 0.69
LANL Sys 18 818.6 1.5 lognormal µ = 10.1123 � = 1.28677 0.37
LANL Sys 19 863.6 1.4 exponential µ = 29000.5 0.18
LANL Sys 21 1986.9 2.3 lognormal µ = 10.6382 � = 1.46402 0.85
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System name Failures False negative
Mean CV Best Fit KS Mean CV Best Fit KS

Blue Gene/L 1040.5 0.92 exponential µ = 62431.3 0.10 1888.1 1.10 exponential µ = 113289 0.79
LANL Sys 3 3595.1 1.1 exponential µ = 215705 0.98 6559.0 1.1 exponential µ = 393538 0.70
LANL Sys 4 3409.1 1.1 exponential µ = 204544 0.77 6187.0 1.1 exponential µ = 371218 0.99
LANL Sys 5 3294.5 1.1 exponential µ = 197671 0.95 6377.9 1.2 exponential µ = 382671 0.35
LANL Sys 6 16796.7 0.9 exponential µ = 1007800 0.81 31878.2 1.1 exponential µ = 1912690 0.99
LANL Sys 23 9288.2 1.3 weibull a = 509380 b = 0.846905 0.97 16272.3 1.2 weibull a = 895274 b = 0.851258 0.98

Table: Statistical Fitting false negative random

System name False negative
Mean CV Best Fit KS

LANL Sys 8 7859.6 1.4 weibull a = 401499 b = 0.767798 0.74
LANL Sys 10 8247.0 3.6 weibull a = 318087 b = 0.647838 0.29
LANL Sys 11 6353.5 3.0 weibull a = 232647 b = 0.609348 0.61
LANL Sys 13 8164.3 3.9 lognormal µ = 11.5257 � = 1.87004 0.14
LANL Sys 14 11351.0 2.5 weibull a = 391931 b = 0.559039 0.77
LANL Sys 15 12136.7 1.2 exponential µ = 728203 0.17
LANL Sys 16 3430.6 1.3 weibull a = 182624 b = 0.810939 0.69
LANL Sys 18 818.6 1.5 lognormal µ = 10.1123 � = 1.28677 0.37
LANL Sys 19 863.6 1.4 exponential µ = 29000.5 0.18
LANL Sys 21 1986.9 2.3 lognormal µ = 10.6382 � = 1.46402 0.85
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Conclusion and future work

Conclusion

Classication based on the randomness tests (iid vs non-iid)

Most of the available failure traces are not random and so are suitable
for use as empirical data for probability fitting.

Failure prediction mechanism is a good tool to catch the non
randomness and correlation.

The failure prediction mechanism acts as a scale function and it
a↵ects only the scale parameter.

The peak of correlation on the initial traces has an important impact
on the prediction results, specifically on the recall value
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Conclusion and future work

Future Work

Analyze more deeply the set of systems with a high correlation like
system 2 or 20 and isolate sources of non-randomness.

Investigate if a cross-correlation of di↵erent time scale has an impact
of the prediction mechanism.

Manage the tradeo↵ between the precision and the recall.

Use di↵erent sources of failure prediction that concerns di↵erent
component of the machine.
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Questions
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Thank You


