

Round-off error and silent soft error propagation in exascale applications

Vincent Baudoui (Argonne/Total SA) vincent.baudoui@gmail.com Franck Cappello (Argonne/INRIA/UIUC-NCSA) Georges Oppenheim (Paris-Sud University) Philippe Ricoux (Total SA)

Error management in exascale applications

- Stability against round-off errors
- Resilience to hardware errors

Objectives

- Be able to validate simulation results
- Build a model for error propagation

Exascale particularities

- High-dimensional problems
- Different algorithms (e.g. block algorithms)
- Possibly non-deterministic order of operations (e.g. process data as soon as available)

Outline

1 Round-off error bounds in high dimensions

2 Code sensitivity analysis strategies

Impact of non-determinism

Outline

1 Round-off error bounds in high dimensions

2 Code sensitivity analysis strategies

3 Impact of non-determinism

Error propagation in exascale applications - Lyon, France, June 12, 2013

Real number IEEE 754 floating point encoding

64 bit double precision: $x = \pm 1.f \times 2^{e-1023}$ (for normal numbers)

Limited accuracy (machine precision $u \simeq 10^{-16}$) \rightarrow round-off errors

Limited-precision arithmetic

 $f(a \text{ op } b) = (a \text{ op } b)(1 + \delta)$ with $|\delta| \le u$ \rightarrow not necessarily associative nor distributive

Example: $10^{17} - 10^{17} + 1 = 1$, but $10^{17} + 1 - 10^{17} = 0$ \rightarrow importance of data order (can change with the number of processors in MPL_Reduce for instance)

If \hat{y} is the computed approximation of y = f(x), we would like to have $\frac{|\hat{y} - y|}{|y|} \approx u$

Forward and backward errors

Forward: error on the result $E = |\hat{y} - y|$

Backward: perturbation in the data $\epsilon = \Delta x$ (for what set of data have we actually solved our problem?)

forward error \lesssim condition number \times backward error

Higham, N. J. (2002), Accuracy and stability of numerical algorithms

Analytical worst-case bounds for linear algebra and some non-linear problems

LU decomposition

Solve Ax = b using LU decomposition

Relative backward error R_n :

$$(A+\Delta A)\hat{x} = b \text{ with } \frac{||\Delta A||_{\infty}}{||A||_{\infty}} = \frac{||A\hat{x} - b||_{\infty}}{||A||_{\infty}||\hat{x}||_{\infty}} = R_n \le \frac{3n^3 u}{1 - 3nu}\rho_n$$

and growth factor $\rho_n = \frac{\max_{i,j,k} |a_{ij}^{(k)}|}{\max_{i,j} |a_{ij}|} \le 2^{n-1}$

Error propagation in exascale applications - Lyon, France, June 12, 2013

Experiments on LU decomposition

Scalapack partitioned algorithm with partial pivoting $A, b \sim \mathcal{N}(0, I)$, 250 repeats for each n

\rightarrow pessimistic error bound

Experiments on LU decomposition

37 problems from the University of Florida sparse matrix collection

Error propagation in exascale applications - Lyon, France, June 12, 2013

Existing analytical bounds not useful in practice, especially for high-dimensional problems \rightarrow rule of thumb: replace *n* by \sqrt{n} for a more realistic estimate

Express probabilistic bounds!

Collaboration with Serge Gratton (CERFACS)

Outline

Round-off error bounds in high dimensions

2 Code sensitivity analysis strategies

3 Impact of non-determinism

Error propagation in exascale applications - Lyon, France, June 12, 2013

2. Code sensitivity analysis strategies

Analytical bounds for basic problems only \rightarrow not enough to study more complex codes

Code sensitivity analysis strategies

- Analyze complex computation accuracy
- Locate sensitive sections of a code

Experimental accuracy analysis

- **1** Repeat computation with increasing precision
- 2 Repeat with different rounding modes:

Rounding	f(1 - u/2)	f(1 + u)
to nearest	0.5000000041109161	0.4999999960408469
to zero	0.500000041036400	0.500000065775587
up	0.5001221042336121	0.9999999552965182
down	0.500000041036401	0.500000065775587

Kahan, W. (2006), How futile are mindless assessments of roundoff in floating-point computation

2. Code sensitivity analysis strategies

3 Repeat with random rounding:

CADNA: forward error oriented approach

Jézéquel, F. & Chesneaux, J. M. (2008), CADNA: a library for estimating round-off error propagation

Run code 3 times perturbing the result *r* of every operation:

Perturb(r) = $\begin{cases} r & \text{with probability } 1/2 \\ r + \text{one}(r) & \text{with probability } 1/4 \\ r - \text{one}(r) & \text{with probability } 1/4 \end{cases}$

(where one(r) is of order of the least significant bit of r)

 \rightarrow insight on the number of significant digits of the result

Repeat with slightly different input data:
PRECISE: data perturbation for backward error analysis
Chaitin-Chatelin, F. & Frayssé, V. (1996), Lectures on finite precision computation

Error propagation in exascale applications - Lyon, France, June 12, 2013

Accuracy estimation through statistical analysis:

- not foolproof (but rigorous analysis is often infeasible)
- can be computationally expensive (numerous repeats)
- for round-off errors only

- \rightarrow looking for new approaches
- \rightarrow consider silent soft errors too

Silent soft errors

Large scale systems \rightarrow increased hardware error probability Some errors are corrected, but others can propagate silently

Random data bit flips due to silent soft errors:

$$\operatorname{Perturb}(b_k b_{k-1} \dots b_1) = \begin{cases} (b_k b_{k-1} \dots b_1) & \text{with probability } 1 - p \\ (\overline{b_k} b_{k-1} \dots b_1) & \text{with probability } p/k \\ (b_k \overline{b_{k-1}} \dots b_1) & \text{with probability } p/k \\ \vdots \\ (b_k b_{k-1} \dots \overline{b_1}) & \text{with probability } p/k \end{cases}$$

Errors of variable magnitude (can affect the exponent bits)

Locate sensitive sections of a code:

- Split up code into a graph
- Analyze parallelism: similar computations performed in parallel can be used for a statistical analysis
- Use automatic differentiation to find sections that will magnify errors

Locate sensitive input data: partition input space

Collaboration with Jean Utke and Stefan Wild (Argonne)

Outline

1 Round-off error bounds in high dimensions

2 Code sensitivity analysis strategies

Impact of non-determinism

In parallel applications, **data may arrive in random order** (delays in message passing between processes)

If data is processed in order of arrival, results can be non-deterministic because of round-off errors

 \rightarrow what happens in case of failure if message order is not stored at checkpoints?

$$a$$
 $f(a,b)$ b $f(b,a)$

Example: 2D Jacobi

15x15 grid X with initial state X^0

At every step n + 1, each cell value $x_{i,j}$ is computed as the mean of its 4 neighbors:

$$x_{i,j}^{n+1} = f(x_{i-1,j}^n, x_{i+1,j}^n, x_{i,j-1}^n, x_{i,j+1}^n)$$
$$= \frac{x_{i-1,j}^n + x_{i+1,j}^n + x_{i,j-1}^n + x_{i,j+1}^n}{4}$$

 \rightarrow Markov process: $X^{n+1} = F(X^n)$

Converge if F is contracting: $d(F(x), F(y)) \le k_F d(x, y), k_F < 1$

Boundary conditions: top and bottom=0, left=10¹⁰, right=-10¹⁰

Random data order \rightarrow non-deterministic results

$$x_{i,j}^{n+1} = \begin{cases} f(x_{i-1,j}^{n}, x_{i+1,j}^{n}, x_{i,j-1}^{n}, x_{i,j+1}^{n}) & \text{with probability } 1/4! \\ f(x_{i+1,j}^{n}, x_{i,j-1}^{n}, x_{i-1,j}^{n}, x_{i,j+1}^{n}) & \text{with probability } 1/4! \\ \vdots \end{cases}$$

$$\Rightarrow X^{n+1} = F_{\theta_{n+1}}(X^n)$$
 with θ_i i.i.d.

Converge (to a stationary distribution) if the F_{θ} functions are contracting in average: $E[\log(k_{F_{\theta}})] < 0$

 \rightarrow some functions may be non-contracting if their probability is relatively low

Diaconis, P. & Freedman, D. (1999), Iterated Random Functions

Standard deviation of cell values at convergence (100 repeats):

The number of iterations also varies

Failure recovery

Failure in the (i, j) cell process $\rightarrow x_{i,j}^{n+1}$ is lost and we get back to the last checkpoint $x_{i,j}^{n-\tau}$

Iterations from $n - \tau$ to n + 1 must be computed again in the neighboring cells

Results may differ because of the data order randomness \rightarrow iterations are restarted from a possibly different state X'^{n+1}

If X^{n+1} remains in the same attraction domain as X^{n+1} , we will converge to the same distribution

 $|x_{i,j}^{n+1} - x_{i,j}^{\prime n+1}|$ can be bounded thanks to round-off error bounds

- Validate large scale simulation results
- High-dimensional problems: existing round-off error bounds do not scale
- Different algorithms: define code sensitivity analysis strategies
- Non-determinism: delimit harmless situations

Round-off error and silent soft error propagation in exascale applications

Thank you for your attention!

