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Error management in exascale applications
@ Stability against round-off errors
@ Resilience to hardware errors

Objectives
@ Be able to validate simulation results
@ Build a model for error propagation

Exascale particularities
@ High-dimensional problems
o Different algorithms (e.g. block algorithms)

@ Possibly non-deterministic order of operations
(e.g. process data as soon as available)
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1. Round-off error bounds in high dimensions

Real number IEEE 754 floating point encoding

64 bit double precision: x = +1.f x 2671923 (ior normal numbers)

exponent fraction
sign (11 bit) (52 bit)
|
I,
o [¢] o
63 52 0

Limited accuracy (machine precision v ~ 1076)
— round-off errors
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1. Round-off error bounds in high dimensions

Limited-precision arithmetic

fl(a op b) = (aop b)(1+9) with |§] <u
— not necessarily associative nor distributive

Example: 10" — 10" +1 =1, but 10" +1 - 10" =0
— importance of data order (can change with the number of
processors in MPI_Reduce for instance)

If y is the computed approximation of y = f(x),
=l
17

~ U

we would like to have
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1. Round-off error bounds in high dimensions

Forward and backward errors

X og-mmmm o - ¥y =f(x)

backward err&

X+ AX - __

Forward: error on the result £ = | — y|

Backward: perturbation in the data ¢ = Ax
(for what set of data have we actually solved our problem?)

forward error < condition number x backward error

Higham, N. J. (2002), Accuracy and stability of numerical algorithms
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1. Round-off error bounds in high dimensions

Analytical worst-case bounds for linear algebra and some
non-linear problems

LU decomposition

Solve Ax = b using LU decomposition
Relative backward error R,:

) Al AR = Bl 3ru
A+NA)X = b with = ~ =R, <——
(A+84) TAle ~ TAT=lRle ~ < T 3n"

max ;|
and growth factor p, = 25— < pn-1
max | a;|
1)
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1. Round-off error bounds in high dimensions

Experiments on LU decomposition
Scalapack partitioned algorithm with partial pivoting
A, b~ N(0, 1), 250 repeats for each n

fin o)
—14 ] /
10 ,'I N =
10151/ L ¥
10—16 i /% % %
10—17 ]

10° 102 10% 104
— pessimistic error bound
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1. Round-off error bounds in high dimensions

Experiments on LU decomposition

37 problems from the University of Florida sparse matrix collection

Rn
10—15 J

10—20 |

10—25 |

.O(n®)
,’/, —_- = -
/% % % T ° o
o %
LI ° ° ..0.:."
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o ° K

101
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1. Round-off error bounds in high dimensions

Existing analytical bounds not useful in practice,
especially for high-dimensional problems

Express probabilistic bounds!

R, (x10-15)

1.5 2 2.5 3

Collaboration with Serge Gratton (CERFACS)
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2. Code sensitivity analysis strategies

Analytical bounds for basic problems only
— not enough to study more complex codes

k — i

L o~
\gz/

Code sensitivity analysis strategies

X y

@ Analyze complex computation accuracy
@ Locate sensitive sections of a code
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2. Code sensitivity analysis strategies

Experimental accuracy analysis

© Repeat computation with increasing precision

@ Repeat with different rounding modes:

Rounding

f(1—u/2)

f(1+u)

to nearest
to zero

up

down

0.5000000041109161
0.5000000041036400
0.5001221042336121
0.5000000041036401

0.4999999960408469
0.5000000065775587
0.9999999552965182
0.5000000065775587

Kahan, W. (2006), How futile are mindless assessments of roundoff

in floating-point computation
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2. Code sensitivity analysis strategies

©® Repeat with random rounding:
CADNA: forward error oriented approach

Run code 3 times perturbing the result r of every operation:
{ r with probability 1/2
Perturb(r) = ¢ r+one(r) with probability 1/4
r —one(r) with probability 1/4
(where one(r) is of order of the least significant bit of r)
— insight on the number of significant digits of the result

@ Repeat with slightly different input data:
PRECISE: data perturbation for backward error analysis
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2. Code sensitivity analysis strategies

Accuracy estimation through statistical analysis:
@ not foolproof (but rigorous analysis is often infeasible)
@ can be computationally expensive (numerous repeats)

@ for round-off errors only

— looking for new approaches

— consider silent soft errors too
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2. Code sensitivity analysis strategies

Silent soft errors

Large scale systems — increased hardware error probability
Some errors are corrected, but others can propagate silently

Random data bit flips due to silent soft errors:
(bkbk_1...by) with probability 1 — p

(bxbk_1...b1) with probability p/k
Perturb(bxbg—_1...b1) = < (bkbk_1...b1) with probability p/k

(bkbk_1...by) with probability p/k

Errors of variable magnitude (can affect the exponent bits)
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2. Code sensitivity analysis strategies

Locate sensitive sections of a code:
@ Split up code into a graph

@ Analyze parallelism: similar computations performed in
parallel can be used for a statistical analysis

@ Use automatic differentiation to find sections
that will magnify errors

Locate sensitive input data: partition input space

Collaboration with Jean Utke and Stefan Wild (Argonne)
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3. Impact of non-determinism

In parallel applications, data may arrive in random order
(delays in message passing between processes)

If data is processed in order of arrival, results can be
non-deterministic because of round-off errors

— what happens in case of failure if message order is not
stored at checkpoints?

(flabD= o= -(itoa)
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3. Impact of non-determinism

Example: 2D Jacobi

15x15 grid X with initial state X°

At every step n + 1, each cell value x; ; is computed as the
mean of its 4 neighbors:

n+1 n n n n
Xii = HOXL s X X1 Xi 1)

/1/+X/+1/+X 1+X//+‘I
4

— Markov process: X" = F(X")
Converge if F is contracting: d(F(x). F(y)) < ked(x,y), kg < 1
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3. Impact of non-determinism

Example: 2D Jacobi

1010
101
15| 1
0.5
10 1
0
5 - -
-0.5
0 - -
| | | | | | | | 71
0 5 10 15 0 5 10 15
initial state X° final state at convergence

Boundary conditions: top and bottom=0, left=10'°, right=—101°
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3. Impact of non-determinism

Random data order — non-deterministic results

f(x,.’117j,x,”+1.j, X,.”jf1 ) x,{7j.+1) with probability 1/4!

x{’j“ _ f(XI-erJ-,XI-'77/-71,XI-'L1J-,XI{7I-+1) with probability 1/4!

= XM=y (X7) with 0, i.i.d.

Converge (to a stationary distribution) if the F, functions are
contracting in average: E[log(kg,)] < 0

— some functions may be non-contracting if their probability
is relatively low

Diaconis, P & Freedman, D. (1999), Ilterated Random Functions
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3. Impact of non-determinism

Standard deviation of cell values at convergence (100 repeats):

The number of iterations also varies
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3. Impact of non-determinism

Failure recovery

Failure in the (/. /) cell process — x ”*‘ is lost and we get back
to the last checkpoint x T

lterations from n — 7 to n+ 1 must be computed again in the
neighboring cells

Results may differ because of the data order randomness
— iterations are restarted from a possibly different state X'+

If X’"*+1 remains in the same attraction domain as X"+, we will
converge to the same distribution

\x”“ ,.’"17“ | can be bounded thanks to round-off error bounds
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Conclusion

@ Validate large scale simulation results

@ High-dimensional problems: existing round-off error
bounds do not scale

@ Different algorithms: define code sensitivity analysis
strategies

@ Non-determinism: delimit harmless situations
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