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SMPI - Introduction

What it is
I Partial Implementation of MPI on top of Simgrid

http://simgrid.gforge.inria.fr/
I Aims at replacing transparently MPI libraries without changing user’s code
I Open source and use sound validated models

Goal
I Simulate the behavior of applications on any kind of system/cluster
I Allow developers to debug (gdb, valgrind) their code on their laptop
I Allow scaling studies and understand platform parameters and limitations

Achievements
I 88 of the most used MPI functions are implemented at this time (mostly

from MPI 1.1)
I 90+ different collective algorithms
I Execution mode #1: Direct execution (online)

I Need to use the same compilation toolchain to avoid wrong estimations
I Possibility to share memory between processes (saves memory)
I Possibility to profile and inject timings for loops (saves time)

I Execution mode #2: Trace injection (offline)
I Capture a trace with Tau/Paraver/...
I Replay the trace in the simulator
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The LogP family[CKP+93, AISS95, KBV00, IFH01]

Such models were initially meant to design algorithms

The LogGPS model[IFH01] in a nutshell

Pr

Ps

T1 T2 T3

(a) Asynchronous mode (k ≤ S).

Routine Condition Cost
MPI Send k ≤ S T1

k > S T4 + T5 + T1

MPI Recv k ≤ S max(T1 + T2 − (tr − ts), 0) + T3

k > S max(o + L− (tr − ts), 0) + o+
T5 + T1 + T2 + T3

MPI Isend o
MPI Irecv o

(b) LogGPS modeling of MPI routine costs.
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(c) Rendez-vous mode (k > S).

T2 =

{
L + kg if k < s

L + sg + (k − s)G otherwise

T1 = o+kOs T3 = o+kOr

T4 = max(L+o, tr−ts)+o T5 = 2o + L

(d) Partial piecewise linear models
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Flow-level Model

Flow-level models A communication (flow) is simulated as a single entity

Ti,j(S) = Li,j + S/Bi,j , where


S message size

Li,j latency between i and j

Bi,j bandwidth between i and j

Estimating Bi,j requires to account for interactions with other flows

Assume steady-state and share bandwidth every time a new flow appears or
disappears

Setting a set of flows F and a set of links L
Constraints For all link j :

∑
if flow i uses link j

ρi ≤ Cj

Objective function

I Max-Min max(min(ρi ))
I or other fancy objectives

e.g., Reno ∼ max(
∑

log(ρi ))

Seamlessly account for topology

Arnaud Legrand – SG Team 5/18



Flow-level Model

Flow-level models A communication (flow) is simulated as a single entity

Ti,j(S) = Li,j + S/Bi,j , where


S message size

Li,j latency between i and j

Bi,j bandwidth between i and j

Estimating Bi,j requires to account for interactions with other flows

Assume steady-state and share bandwidth every time a new flow appears or
disappears

Setting a set of flows F and a set of links L
Constraints For all link j :

∑
if flow i uses link j

ρi ≤ Cj

Objective function

I Max-Min max(min(ρi ))
I or other fancy objectives

e.g., Reno ∼ max(
∑

log(ρi ))

Seamlessly account for topology

Arnaud Legrand – SG Team 5/18



Flow-level Model

Flow-level models A communication (flow) is simulated as a single entity

Ti,j(S) = Li,j + S/Bi,j , where


S message size

Li,j latency between i and j

Bi,j bandwidth between i and j

Estimating Bi,j requires to account for interactions with other flows

Assume steady-state and share bandwidth every time a new flow appears or
disappears

Setting a set of flows F and a set of links L
Constraints For all link j :

∑
if flow i uses link j

ρi ≤ Cj

Objective function

I Max-Min max(min(ρi ))
I or other fancy objectives

e.g., Reno ∼ max(
∑

log(ρi ))

Seamlessly account for topology

Arnaud Legrand – SG Team 5/18



Flow-level Model

Flow-level models A communication (flow) is simulated as a single entity

Ti,j(S) = Li,j + S/Bi,j , where


S message size

Li,j latency between i and j

Bi,j bandwidth between i and j

Estimating Bi,j requires to account for interactions with other flows

Assume steady-state and share bandwidth every time a new flow appears or
disappears

Setting a set of flows F and a set of links L
Constraints For all link j :

∑
if flow i uses link j

ρi ≤ Cj

Objective function

I Max-Min max(min(ρi ))
I or other fancy objectives

e.g., Reno ∼ max(
∑

log(ρi ))

Seamlessly account for topology

Arnaud Legrand – SG Team 5/18



SimGrid Validity Results until 2011

SimGrid validity: Research focus since 2002

I 2002 Sound model proposed ⇒ Validity checked on a few simple scenarios.

I 2007- Error evaluation starts ⇒ Identify (and solve) model’s weaknesses

Settings: Synthetic App. + Synthetic WAN. Compare against GTNetS

I Errors were hunted down + unexpected phenomenon were understood

I Sharing mechanism from theoretical literature experimentally proved wrong

; The model and its instanciation were considerably improved

I SimGrid and packet-level simulators now mostly diverge in extreme cases

← result divergences

← BW given to red flow

In this scenario, GTNetS and SG agree on termination date of most flows. The most diverging gets no bandwidth for a while
although all others are done.

Such fluid models can account for TCP key characteristics
I slow-start
I flow-control limitation

I RTT-unfairness
I cross traffic interference

They are a very reasonable approximation for most LSDC systems
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Reality is much more complicated than LogGPS

Focus on TCP for now as it seems challenging and would be useful in the European
Mont-Blanc project (toward Exascale using low-power embedded technology).
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We do not assume such model and instead add what seems required and trim useless
parts
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SMPI model for P2P communication
SMPI Asynchronous
mode (k ≤ Sa)

T3

Pr

Ps

T1

T2

SMPI Detached mode
(Sa < k ≤ Sd)

Ps

Pr

T2T4

T1

SMPI Synchronous mode
(k > Sd)

Ps

Pr

T4 T2

I Simple MPI program, 6 series of randomized tests, 1000 different messages
sizes from 1 Byte to 1GB:

I R script automatically computes latency, bandwidth, timings and generates
XML Simgrid platform parameters

<prop id="smpi/os" value="1:8.75118726019245e-06:7.09598480584951e-10;
1420:1.38989305424406e-05:2.18111838119125e-10;
65536:0.000193970854779561:-4.82025737428887e-11;
327680:0:0"/>

...
<prop id="smpi/async_small_thres" value="65536"/>
<prop id="smpi/send_is_detached_thres" value="327680"/>
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Not doing so can be particularly harmful

MPI Oddities and Cluster Peculiarities
I Protocol switch (1500, 65k, 327k, . . . ),
I Noisy areas and complex synchronization
I New distinctions (e.g., MPI Send vs. MPI Isend for small messages) appear

when changing cluster
I Weird SendRecv behavior in the middle phase of pairwise AllToAll

1 2 3

1. Need to account for eager mode!
2. The overhead of syscalls and memory copies is not negligible
3. Ok now but simple modeling error ; gross inaccuracies

Hiding errors is easy: consider makespan only and overfit model parameters
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Modeling Saturation on G5K cluster

Experimental Setup
We used the graphene cluster of the Grid’5000 experimental testbed:

I 144 2.53GHz Quad-Core Intel Xeon x3440 nodes

I Four cabinets interconnected by a hierarchy of 10 Gigabit Ethernet switches

Main issue
I Simple collective operations are not too sensitive to bandwidth saturation

I AllToAll stress the network all way long

I Contention may occur within or between cabinets

I Identified issues:
I Only 65% of max bandwidth (fullduplex 2B) with MPI SendRecv
I No saturation within cabinets but similar limitation between cabinets
I Nodes and cabinet interconnection have three links: up, down, limiter
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Modeling Collective Communications

Some projects propose to use simple analytic formula. This seems a little naive.
I Real MPI applications use several implementations for each collective, and select

the right one at runtime
I 2300 lines of code for the AllReduce in OpenMPI!!!

I Our initial SMPI versions had only one simple implementation for each one
(except alltoall, which had 3):

I StarMPI: large collection of implementations for collectives, adaptative selector
I SMPI now: StarMPI’s collectives reused,
I 90+ collective algorithms but only one selected at each run (no adaptation)
I Future work: steal MPICH and OpenMPI selector
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(In)Validation of SMPI with NAS PB
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(In)Validation of SMPI with NAS PB
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(In)Validation of Real Life with NAS PB

CG 32 nodes, red = send, yellow = wait

1. Communication time (32) ≈ a few micro seconds

2. Communication time (128) ≈ sometimes 200 ms!!!
I Occurs 24 times leading to a delay of 4.86s out of 14.4s!!!
I Removing it would lead to the correct estimation
I Identified to be TCP RTO that also arise in the cloud context (“TCP Incast

Throughput Collapse”)
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BigDFT

BigDFT in a nutshell
I Density Functional Theory (DFT) code (electronic structure simulation)
I Test application in the European Mont-Blanc project
I Heavily relies on collective operations

Online Simulation issues
I Global variables (Fortran Code, manual privatization with openmp), config-

uration files
I Get rid of computation checks (ruined by computation and memory folding)
I Use different set of collective operations depending on size, instance, ...

First results

I InfiniBand

I Tibidabo (Mont-Blanc
ARM cluster with Eth-
ernet 10G)

Simulated run
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Future Work in SMPI

Main concerns of the SimGrid project
I Validity: Get realistic results (controlled experimental bias)

I Scalability: Simulate fast enough problems big enough

I Associated tools: campaign mgmt, result analysis, settings generation, . . .

I Applicability: If it doesn’t simulate what is important to you, it’s void

I Open Source: We do our best for user support; Coding sprint a week ago

Important concerns for SMPI
I Tried to use a Reproducible Research approach. We need to set up a clean

reproducible experimental workflow and a trace repository

I Test with other network models and other architectures and with shared memory

I Test with other applications: Sweep3D, Linpack, SpecFEM3D, . . .

I Privatization is still not automatic, hence requires both SMPI and application
expertise

I Noise characterization and deterministic injection

I Scale to more than only a few hundred nodes with real applications (we have
real BigDFT traces up to 1024 nodes, infiniband)
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SMPI and JLPC

Potential collaborations in the joint lab

LogGOPSim Loading GOAL/CDAG in SimGrid is trivial

I Would allow to simulate seamlessly network hierarchy and contention
I What about injecting system noise? Failures?
I Using SMPI to evaluate topology-aware collective communications?
I A torus network has been implemented by a Master at UIUC

BigSim Seems more resource demanding and our trials at running it were... painful

I Inject traces from BIGSim
I May want to benefit from hierarchical fluid network models
I Has nice tricks for variable privatization
I Handles distributed execution while it is WIP in SG

Visualization tools (UFRGS, Brazil) need new tools with both spatial and temporal
aggregation capabilities

http://simgrid.gforge.inria.fr/
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