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Error sources (courtesy Franck Cappello)

* Analysis of error and failure logs

* In 2005 (Ph. D. of CHARNG-DA LU) : “Software halts account for the most number of
outages (59-84 percent), and take the shortest time to repair (0.6-1.5 hours). Hardware
problems, albeit rarer, need 6.3-100.7 hours to solve.”

+  In 2007 (Garth Gibson, ICPP Keynote): HD|:>

FIFIEIET T s
-Saﬁware
Networlk
& Hardware | [Seniomen
ERHuman
i NN B =0
5 60
g 50%
* In 2008 (Oliner and J. Stearley, DSN Conf.): 8
Raw Filtered ¢
Type Count % Count % 20|
Hardware 174336516 1 004 1 878
< Software 144,899 | 0.08 | 63814 | & 0
Indeterminate 3350044 | 1.88 | 1,832 | 17.21 Pink Blue Red Green Bleck Al

Relative frequency of root

cause by system type.
Software errors: Applications, OS bug (kernel panic), communication libs, File system error and other.
Hardware errors, Disks, processors, memory, network

Conclusion: Both Hardware and Software failures have to be considered
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A few definitions

Many types of faults: software error, hardware
malfunction, memory corruption

Many possible behaviors: silent, transient, unrecoverable
Restrict to silent errors

This includes some software faults, some hardware errors
(soft errors in L1 cache), double bit flip

Silent error detected when the corrupt data is activated
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A few definitions

Many types of faults: software error, hardware
malfunction, memory corruption

Many possible behaviors: silent, transient, unrecoverable
Restrict to silent errors

This includes some software faults, some hardware errors
(soft errors in L1 cache), double bit flip

Silent error detected when the corrupt data is activated

“Silent errors are the black swan of errors”, Marc Snir, 2
days ago (or something like this)
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Errorj é Detection

Xe Xy

Time

Figure : Error and detection latency.

e X, is the inter arrival time between errors; mean time fi,.

e X, is the error detection time; mean time pq.
e We assume Xy and X, independent.
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C the checkpointing time
R the recovery time
W the total work

w some amount of work

7.0

Notations
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When X, follows an exponential law of parameter A\ = #i in
e

order to execute a total work of w + C, we need:

Exponential

disuibation e Probability of execution without error
Any distribution K——)

B(T(w)) = &) (w + €)
+ (1 _ e—)\e(W+C)) (E( Tlost) + E(Xd) aF E( Trec) + E( T(W)))

e Probability of erfor during w + C

e Execution time with an error
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k verifications
for 1 checkpoint
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This is the time elapsed between the completion of the last
S checkpoint and the error

distribution

E( Tiost) :/ xP(X = x|X < w+ C)dx
0

1 w+C N
- Aee d
IP(X<W+C)/0 Xhe€ X

B 1 w+ C
- ):_ ere(w+C) _ 1
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This is the time to recover from the error (there can be a fault
dbution durnig recovery):
E(Trec) = e FR
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E( Tlost) + IE:(Xd) + IE:(Trec)

This is the time to recover from the error (there can be a fault
dbution durnig recovery):

E(Tree) = e FR
+ (1 — e 2R (E(Riost) + E(Xg) + E(Trec))

Similarly to E( Tjost), we have: E(Rjost) = /\ie - R

ereR—_1"

So finally, E( Trec) = (R — 1) (e + 1a)
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Using n chunks of size w; (with Y>> w; = W), we have:
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with K constant.
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Minimum when all the w;'s are equal to W/n.
The optimal n can be found by differentiation
A good approximation is w = /2 C (Young's formula!)
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Framework (slide stolen from Amina)

Waste: fraction of time not spent for useful
computations J

Application waste: fraction of time the processes do not
execute the application

e Platform waste: fraction of time the resources are not
used to perform useful work
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o TIMEp,s: application base time > |

| |

e TIMEgg: with periodic . | |

) IMERF
checkpoints : 3
. T e
Any distribution but failure-free R
TIM}'EFina\ l

e TIMEFj,,: expectation of time ‘
with failures

—
TIMEFjha X WASTEE,j

(1 — WASTErg) TIMEFF = TIMEpase

(1 — WASTER,j|) TIMEFjna = TIMEFg

TIMEEjnal— TIMEpase

WASTE = TIMEFinal

WASTE = 1 — (1 — WASTEFg)(1 — WASTEFai)



Silent error
detection

G. Aupy

Introduction,
motivation

Optimal
Checkpointing
strategy

Exponential
distribution

Any distribution

Limited
resources

Incorporating
detection

k checkpoints
for 1 verification

k verifications
for 1 checkpoint

Conclusion,
future work

Back to our model

We can show that

C
AS = =
W TEFF = T
2 + R

WASTEFR,j =
He
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We can show that
WASTEFg =

WASTEFR,j =

Only valid if = >+ R+ pg < pe.

C
T
+R

i

Back to our model



Silent error
detection

G. Aupy

Exponential
distribution

Any distribution

k checkpoints
for 1 verification
k verifications

for 1 checkpoint

Back to our model

We can show that

C
WASTEFF = —
FF =T
T
TR+
WASTEFR,j = 27Hd
e

Only valid if T + R+ pg < fle.

Then the waste is minimized for

Topt = /2(tte = (R + 1)) C) = V201 C
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To sum up

o The best period is Topt =~ /21 C.
k checkpoints
for 1 verification

e |t is independent of X4!

k verifications
for 1 checkpoint
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Analytical optimal solutions, whatever the distributions, and
without any knowledge on X, except its mean

Any distribution

If Xy can be arbitrary large, we do not know how far back in
time + need to store all checkpoints (taken during the
application execution)
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The case with limited resources

Let us suppose here that we can only save the last k
checkpoints.
Definition (Critical failure)

An error that is detected when all checkpoints contain
corrupted data. This happens with probability P,isk on a whole

execution.
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The case with limited resources

Obviously, Pysx decreases with T (when Xy is fixed). Hence,
Prisk < € leads to a lower bound T, on T.

We derived an analytical form for P,k when X, follows an
exponential law. We use this in the following as a good

approximation for arbitrary laws.
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Figure : k =3, Ae=2C Ay = 30\, w = 10d, C = R = 600s

100y ’

Topt & 100min, Prsk( Topt) & 38 - 107°, for a waste of 23.45%.

To reduce Pyig to 1074, a Tin of 8000 seconds is sufficient,
increasing the waste by only 0.6%. In this case, the benefit of
fixing the period to max( Topt, Tmin) is obvious.



Silent error
detection

G. Aupy

Limited
resources

More optimistic technologic scenario (smaller C and R):

Topt is largely reduced (down to less than 35 minutes between
checkpoints), but Pyisk(Topt) climbs to 1/2, an unacceptable
value.

To reduce Pyg to 107%, it becomes necessary to consider a
Tmin of 6650 seconds. The waste increases to 15%, significantly
higher than the optimal one, which is below 10%
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S 06 . 0.12
£ Risk at Opt.: .5362607188 o
o k7]
s g
Z04 0.1
£
©
Qo
0.2
o 0.10
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Period T (seconds, Period T (seconds)
Figure : k=3, Xe = %,Ad =30\, w = 10d, C = R = 60s.
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Limitation of the model

It is not clear how can one detect when the error occured!
(hence to identify the last valid checkpoint)

We need a verification mechanism to check the correctness of
the checkpoints. This is not free!

A possible solution would be to add artificial verifications: a
periodic mechanism that shall verify that there was no silent
error in the previous computations.
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With detection

We assume there are no errors during the checkpoints
(remember Marc Snir's talk: silent data corruption is easy to
protect on memory).

The first simple idea is to verify the work before each
checkpoint to be sure that there was no corrupted work.
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k(w+ C)+V
! 1 k .

k checkpoints 1 K T

for 1 verification - lost I

f v:rifiuiiunz VVASTEFa” = M

for 1 checkpoint Me

where Tjos:(i) is the time lost if the error occured in the i’
segment.
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k checkpoints T/OSt(k) = R + V + w + V

for 1 verification

At i Tiost(i) = (k— i +1)(R+V +w)+ (k—i)C+ V
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Iml(lmfkpniul T/OSt(I) ( _/_|_1)(R+ V+W)+(k—l)c+ V

Tiost(1) = k(R+V4+w)—V+(k—1)C+ V

Finally we are able to compute the optimal solution thanks to
this.
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Figure : V =100s,C = R =6s, and u = %

C=6s< V.

When V' = 100 seconds, a verification is done only every 3
checkpoints optimally. This is 10% improvement compared to
k=1
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C = 60s is not negligible anymore before V (V ~ 5C).
The waste is dominated by the cost of the verification, and little
improvement can be achieved by taking the optimal value for k.
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k
Figure : V =300s,C = R = 60s, and p = %%0- .
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Very similarly, we obtain:

i
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WASTE kV+C
FF= —
k(w+V)+C
1 k T, .
k checkpoints = A lost (1
aol -V_h!ili_(;lim. WASTEFa” — M
for T eheckpemnt Lhe

Tiost(i) = R+ i(V 4+ w)

where Tjos:(i) is the time lost if the fault occured in the ith
segment.
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fygitntens .V =205 < C.
When C = 600 seconds, five verifications are done for every

checkpoint optimally. This is 14% improvement compared to

k=1
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V=2s<x C.
When C = 60 seconds, five verifications are done every check-
point optimally. This is 18% improvement compared to k = 1.
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e Study of the optimal checkpointing strategy in presence of

silent errors
e Analytical solution for the different probability models

k checkpoints
for 1 verification . . pe . .
: e Study in presence of verification mechanisms

k verifications
for 1 checkpoint
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e Without verification: When we keep k checkpoints in
memory, we do not have to keep the k last checkpoints,
study of new strategies (fibonacci, binary..)

e With verifications: We focused on cases with integer
number of checkpoints per verification (or the converse),
can we extend that?

Conclusion,
future work
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