On the Combination of Silent Error Detection and Checkpointing

Guillaume Aupy, Anne Benoit, Thomas Hérault, Yves Robert, Frédéric Vivien & Dounia Zaidouni

June 14, 2013

G. Aupy

Introduction, motivation

Optimal Checkpointing strategy

Exponential distribution Any distribution

Limited resources

Incorporating detection

k checkpoints
for 1 verification
k verifications
for 1 checkpoint

(4)

Conclusion, future work

1 Introduction, motivation

Optimal Checkpointing strategy Exponential distribution Any distribution

3 Limited resources

corporating detection *k* checkpoints for 1 verification *k* verifications for 1 checkpoint

5 Conclusion, future work

G. Aupy

Introduction, motivation

Optimal Checkpointing strategy

Exponential distribution Any distribution

Limited resources

Incorporating detection

k checkpoints
for 1 verification
k verifications
for 1 checkpoint

Conclusion, future work

Error sources (courtesy Franck Cappello)

Sources of failures

- Analysis of error and failure logs
- In 2005 (Ph. D. of CHARNG-DA LU): "Software halts account for the most number of outages (59-84 percent), and take the shortest time to repair (0.6-1.5 hours). Hardware problems, albeit rarer, need 6.3-100.7 hours to solve."
- In 2007 (Garth Gibson, ICPP Keynote):

In 2008 (Oliner and J. Stearley, DSN Conf.):

	Raw		Filtered	
Туре	Count	%	Count	%
Hardware	174 586 516	98.04	1.999	18.78
Software	144,899	0.08	6,814	64.01
Indeterminate	3,350,044	1.88	1,832	17.21

Software errors: Applications, OS bug (kernel panic), communication libs, File system error and other. Hardware errors, Disks, processors, memory, network

Conclusion: Both Hardware and Software failures have to be considered

G. Aupy

A few definitions

Introduction, motivation

Optimal Checkpointing strategy

Exponential distribution Any distribution

Limited resources

Incorporating detection

k checkpoints
for 1 verification
k verifications
for 1 checkpoint

Conclusion, future work

3.0

- Many types of faults: software error, hardware malfunction, memory corruption
- Many possible behaviors: silent, transient, unrecoverable
- Restrict to silent errors
- This includes some software faults, some hardware errors (soft errors in L1 cache), double bit flip
- Silent error detected when the corrupt data is activated

G. Aupy

A few definitions

Introduction, motivation

Optimal Checkpointing strategy

Exponential distribution Any distribution

Limited resources

Incorporating detection

k checkpoints
for 1 verification
k verifications
for 1 checkpoint

Conclusion, future work

- Many types of faults: software error, hardware malfunction, memory corruption
- Many possible behaviors: silent, transient, unrecoverable
- Restrict to silent errors
- This includes some software faults, some hardware errors (soft errors in L1 cache), double bit flip
- Silent error detected when the corrupt data is activated
- "Silent errors are the black swan of errors", Marc Snir, 2 days ago (or something like this)

G. Aupy

Introduction, motivation

Optimal Checkpointing strategy

Exponential distribution Any distribution

Limited resources

Incorporating detection

k checkpoints
for 1 verification
k verifications
for 1 checkpoint

Conclusion, future work

4.0

Disclaimer: I am not going to talk about new hardware solutions, but some mathematical solutions.

G. Aupy

Introduction, motivation

Optimal Checkpointing strategy

Exponential distribution Any distribution

Limited resources

Incorporating detection

k checkpoints
for 1 verification
k verifications
for 1 checkpoint

Conclusion, future work

5.0

Introduction, motivation

Optimal Checkpointing strategy Exponential distribution Any distribution

3 Limited resources

Incorporating detection k checkpoints for 1 verification k verifications for 1 checkpoint

5 Conclusion, future work

G. Aupy

Introduction, motivation

Optimal Checkpointing strategy

Exponential distribution Any distribution

Limited resources

Incorporating detection

k checkpoints
for 1 verification
k verifications
for 1 checkpoint

Conclusion, future work

Figure : Error and detection latency.

- X_e is the inter arrival time between errors; mean time μ_e .
- X_d is the error detection time; mean time μ_d .
- We assume X_d and X_e independent.

G. Aupy

Introduction, motivation

Optimal Checkpointing strategy

Exponential distribution Any distribution

Limited resources

Incorporating detection

k checkpoints
for 1 verification
k verifications
for 1 checkpoint

Conclusion, future work • C the checkpointing time

Notations

- R the recovery time
- W the total work

7.0

w some amount of work

G. Aupy

Introduction, motivation

Optimal Checkpointing strategy

Exponential distribution Any distribution

Limited resources

Incorporating detection

k checkpoints
for 1 verification
k verifications
for 1 checkpoint

Conclusion, future work

8.0

When X_e follows an exponential law of parameter $\lambda_e = \frac{1}{\mu_e}$, in order to execute a total work of w + C, we need:

For one chunk

G. Aupy

Introduction, motivation

Optimal Checkpointing strategy

Exponential distribution Any distribution

Limited resources

Incorporating detection

k checkpoints for 1 verification k verifications for 1 checkpoint

Conclusion, future work For one chunk

When X_e follows an exponential law of parameter $\lambda_e = \frac{1}{\mu_e}$, in order to execute a total work of w + C, we need:

Probability of execution without error

 $\mathbb{E}(T(w)) = e^{-\lambda_e(w+C)}(w+C)$

8.0

+ $(1 - e^{-\lambda_e(w+C)})$ $(\mathbb{E}(T_{lost}) + \mathbb{E}(X_d) + \mathbb{E}(T_{rec}) + \mathbb{E}(T(w)))$

G. Aupy

Introduction, motivation

Optimal Checkpointing strategy

Exponential distribution Any distribution

Limited resources

Incorporating detection

k checkpoints
for 1 verification
k verifications
for 1 checkpoint

Conclusion, future work When X_e follows an exponential law of parameter $\lambda_e = \frac{1}{\mu_e}$, in order to execute a total work of w + C, we need:

• Probability of execution without error

 $\mathbb{E}(T(w)) = e^{-\lambda_e(w+C)} (w+C)$

+ $(1 - e^{-\lambda_e(w+C)})$ $(\mathbb{E}(T_{lost}) + \mathbb{E}(X_d) + \mathbb{E}(T_{rec}) + \mathbb{E}(T(w)))$

• Probability of error during w + C

For one chunk

G. Aupy

Introduction, motivation

Optimal Checkpointing strategy

Exponential distribution Any distribution

Limited resources

Incorporating detection

k checkpoints for 1 verification k verifications for 1 checkpoint

Conclusion, future work When X_e follows an exponential law of parameter $\lambda_e = \frac{1}{\mu_e}$, in order to execute a total work of w + C, we need:

For one chunk

• Probability of execution without error

$$\mathbb{E}(T(w)) = e^{-\lambda_e(w+C)} (w+C)$$

+ $(1 - e^{-\lambda_e(w+C)})$ $(\mathbb{E}(T_{lost}) + \mathbb{E}(X_d) + \mathbb{E}(T_{rec}) + \mathbb{E}(T(w)))$

- Probability of error during $w + C^{\prime}$
- Execution time with an error -

8.0

G. Aupy

Introduction, motivation

Optimal Checkpointing strategy

Exponential distribution Any distribution

Any distribution

Limited resources

Incorporating detection

k checkpoints for 1 verification k verifications for 1 checkpoint

Conclusion, future work Let us focus on the time lost due to an error: $\mathbb{E}(T_{lost}) + \mathbb{E}(X_d) + \mathbb{E}(T_{rec})$

G. Aupy

Introduction, motivation

Optimal Checkpointing strategy

Exponential distribution Any distribution

Limited resources

Incorporating detection

k checkpoints
for 1 verification
k verifications
for 1 checkpoint

Conclusion, future work Let us focus on the time lost due to an error: $\mathbb{E}(T_{lost}) + \mathbb{E}(X_d) + \mathbb{E}(T_{rec})$

9.0

This is the time elapsed between the completion of the last checkpoint and the error

$$\mathbb{E}(T_{lost}) = \int_0^\infty x \mathbb{P}(X = x | X < w + C) dx$$
$$= \frac{1}{\mathbb{P}(X < w + C)} \int_0^{w+C} x \lambda_e e^{-\lambda_e x} dx$$
$$= \frac{1}{\lambda_e} - \frac{w+C}{e^{\lambda_e (w+C)} - 1}$$

G. Aupy

Introduction, motivation

Optimal Checkpointing strategy

Exponential distribution Any distribution

Limited resources

Incorporating detection

k checkpoints
for 1 verification
k verifications
for 1 checkpoint

Conclusion, future work Let us focus on the time lost due to an error: $\mathbb{E}(T_{lost}) + \mathbb{E}(X_d) + \mathbb{E}(T_{rec})$

This is the time needed for error detection, $\mathbb{E}(X_d) = \mu_d$

G. Aupy

Introduction, motivation

Optimal Checkpointing strategy

Exponential distribution Any distribution

Limited resources

Incorporating detection

k checkpoints
for 1 verification
k verifications
for 1 checkpoint

Conclusion, future work Let us focus on the time lost due to an error: $\mathbb{E}(T_{lost}) + \mathbb{E}(X_d) + \mathbb{E}(T_{rec})$

9.0

This is the time to recover from the error (there can be a fault durnig recovery):

$$\mathbb{E}(T_{rec}) = e^{-\lambda_e R} R \ + (1 - e^{-\lambda_e R})(\mathbb{E}(R_{lost}) + \mathbb{E}(X_d) + \mathbb{E}(T_{rec}))$$

G. Aupy

Introduction, motivation

Optimal Checkpointing strategy

Exponential distribution Any distribution

Limited resources

Incorporating detection

k checkpoints
for 1 verification
k verifications
for 1 checkpoint

Conclusion, future work Let us focus on the time lost due to an error: $\mathbb{E}(T_{lost}) + \mathbb{E}(X_d) + \mathbb{E}(T_{rec})$

9.0

This is the time to recover from the error (there can be a fault durnig recovery):

$$\mathbb{E}(T_{rec}) = e^{-\lambda_e R} R \ + (1 - e^{-\lambda_e R})(\mathbb{E}(R_{lost}) + \mathbb{E}(X_d) + \mathbb{E}(T_{rec}))$$

Similarly to $\mathbb{E}(T_{lost})$, we have: $\mathbb{E}(R_{lost}) = \frac{1}{\lambda_e} - \frac{R}{e^{\lambda_e R} - 1}$.

G. Aupy

Introduction, motivation

Optimal Checkpointing strategy

Exponential distribution Any distribution

Limited resources

Incorporating detection

k checkpoints
for 1 verification
k verifications
for 1 checkpoint

Conclusion, future work Let us focus on the time lost due to an error: $\mathbb{E}(T_{lost}) + \mathbb{E}(X_d) + \mathbb{E}(T_{rec})$

This is the time to recover from the error (there can be a fault durnig recovery):

$$\mathbb{E}(\mathcal{T}_{rec}) = e^{-\lambda_e R} R \ + (1 - e^{-\lambda_e R})(\mathbb{E}(R_{lost}) + \mathbb{E}(X_d) + \mathbb{E}(\mathcal{T}_{rec}))$$

Similarly to $\mathbb{E}(T_{lost})$, we have: $\mathbb{E}(R_{lost}) = \frac{1}{\lambda_e} - \frac{R}{e^{\lambda_e R} - 1}$.

So finally,
$$\mathbb{E}(T_{rec}) = (e^{\lambda_e R} - 1)(\mu_e + \mu_d)$$

9.0

G. Aupy

Introduction, motivation

Optimal Checkpointing strategy

Exponential distribution Any distribution

Limited resources

Incorporating detection

k checkpoints
for 1 verification
k verifications
for 1 checkpoint

Conclusion, future work And finally,

9.0 G

$$\mathbb{E}(T(w)) = e^{\lambda_e R} \left(\mu_e + \mu_d \right) \left(e^{\lambda_e (w+C)} - 1 \right)$$

This is the exact solution!

G. Aupy

Introduction, motivation

Optimal Checkpointing strategy

Exponential distribution Any distribution

Limited resources

Incorporating detection

k checkpoints for 1 verification k verifications for 1 checkpoint

Conclusion, future work

For multiple chunks

Using *n* chunks of size w_i (with $\sum_{i=1}^{n} w_i = W$), we have:

$$\mathbb{E}(T(W)) = K \sum_{i=1}^{n} (e^{\lambda_{e}(w_{i}+C)} - 1)$$

with K constant.

Independent of $\mu_d!$

Minimum when all the w_i 's are equal to W/n.

G. Aupy

Introduction, motivation

Optimal Checkpointin strategy

Exponential distribution Any distribution

Limited resources

Incorporating detection

k checkpoints for 1 verification k verifications for 1 checkpoint

Conclusion, future work

Using *n* chunks of size w_i (with $\sum_{i=1}^n w_i = W$), we have:

$$\mathbb{E}(T(W)) = K \sum_{i=1}^{n} (e^{\lambda_e(w_i+C)} - 1)$$

with K constant.

Independent of $\mu_d!$

Minimum when all the w_i 's are equal to W/n. The optimal n can be found by differentiation A good approximation is $w = \sqrt{2\mu_e C}$ (Young's formula!)

10.0

For multiple chunks

G. Aupy

Introduction, motivation

Optimal Checkpointing strategy

Exponential distribution

Any distribution

Limited resources

Incorporating detection

k checkpoints for 1 verification k verifications for 1 checkpoint

Conclusion, future work

The case of arbitrary distributions

We extend here the results when X_e follows an arbitrary distribution of mean μ_e .

11.0

G. Aupy

Introduction, motivation

Optimal Checkpointing strategy

Exponential distribution

Any distribution

Limited resources

Incorporating detection

k checkpoints for 1 verification k verifications for 1 checkpoint

Conclusion, future work

Framework (slide stolen from Amina)

Waste: fraction of time not spent for useful computations

- Application waste: fraction of time the processes do not execute the application
- Platform waste: fraction of time the resources are not used to perform useful work

12.0

G. Aupy

Introduction, motivation

Optimal Checkpointing strategy

Exponential distribution

Any distribution

Limited resources

Incorporating detection

k checkpoints for 1 verification k verifications for 1 checkpoint

Conclusion, future work

- $TIME_{base}$: application base time
 - TIME_{FF}: with periodic checkpoints but failure-free
 - $T{\rm IME}_{\mbox{Final}}{\rm :}$ expectation of time with failures

$$(1 - \text{Waste}_{\mathsf{FF}})\text{Time}_{\mathsf{FF}} = \text{Time}_{\mathsf{base}}$$

$$(1 - \text{Waste}_{\mathsf{Fail}})\text{Time}_{\mathsf{Final}} = \text{Time}_{\mathsf{FF}}$$

 $WASTE = \frac{TIME_{Final} - TIME_{base}}{TIME_{Final}}$

 $\text{WASTE} = 1 - (1 - \text{WASTE}_{FF})(1 - \text{WASTE}_{Fail})$

13.0

Waste

G. Aupy

Introduction, motivation

Optimal Checkpointing strategy

Exponential distribution

Any distribution

Limited resources

Incorporating detection

k checkpoints for 1 verification k verifications for 1 checkpoint

Conclusion, future work

We can show that $\mathrm{WASTE}_{\mathsf{FF}} = \frac{C}{T}$ $\mathrm{WASTE}_{\mathsf{Fail}} = \frac{\frac{T}{2} + R + \mu_d}{\mu_e}$

Back to our model

G. Aupy

Introduction, motivation

Optimal Checkpointing strategy

Exponential distribution

Any distribution

Limited resources

Incorporating detection

k checkpoints for 1 verification k verifications for 1 checkpoint

Conclusion, future work

We can show that $\mathrm{WASTE}_{\mathsf{FF}} = \frac{C}{T}$ $\mathrm{WASTE}_{\mathsf{Fail}} = \frac{\frac{T}{2} + R + \mu_d}{\mu_e}$

Only valid if $\frac{T}{2} + R + \mu_d \ll \mu_e$.

Back to our model

G. Aupy

Introduction, motivation

Optimal Checkpointing strategy

Exponential distribution

Any distribution

Limited resources

Incorporating detection

k checkpoints for 1 verification k verifications for 1 checkpoint

Conclusion, future work

We can show that $\mathrm{WASTE}_{\mathsf{FF}} = \frac{C}{T}$ $\mathrm{WASTE}_{\mathsf{Fail}} = \frac{\frac{T}{2} + R + \mu_d}{\mu_e}$

Only valid if $\frac{T}{2} + R + \mu_d \ll \mu_e$.

Then the waste is minimized for $T_{\rm opt} = \sqrt{2(\mu_e - (R + \mu_d))C)} \approx \sqrt{2\mu_e C}$

14.0

G. Aupy

Introduction, motivation

Optimal Checkpointing strategy

Exponential distribution

Any distribution

Limited resources

Incorporating detection

k checkpoints for 1 verification k verifications for 1 checkpoint

Conclusion, future work

Theorem

To sum up

• The best period is $T_{opt} \approx \sqrt{2\mu_e C}$.

15.0

Wake Up

• It is independent of X_d!

Limitation of this model

G. Aupy

Introduction, motivation

Optimal Checkpointing strategy

Exponential distribution Any distribution

Limited resources

Incorporating detection

k checkpoints
for 1 verification
k verifications
for 1 checkpoint

Conclusion, future work Analytical optimal solutions, whatever the distributions, and without any knowledge on X_d except its mean

If X_d can be arbitrary large, we do not know how far back in time + need to store all checkpoints (taken during the application execution)

G. Aupy

Introduction, motivation

Optimal Checkpointin strategy

Exponential distribution Any distribution

Limited resources

Incorporating detection

k checkpoints for 1 verification k verifications for 1 checkpoint

4

Conclusion, future work

Introduction, motivation

Optimal Checkpointing strategy Exponential distribution Any distribution

3 Limited resources

corporating detection *k* checkpoints for 1 verification *k* verifications for 1 checkpoint

5 Conclusion, future work

G. Aupy

Introduction, motivation

Optimal Checkpointing strategy

Exponential distribution Any distribution

Limited resources

Incorporating detection

k checkpoints
for 1 verification
k verifications
for 1 checkpoint

Conclusion, future work

Let us suppose here that we can only save the last k checkpoints.

Definition (Critical failure)

An error that is detected when all checkpoints contain corrupted data. This happens with probability $\mathbb{P}_{\mathsf{risk}}$ on a whole execution.

G. Aupy

Introduction, motivation

Optimal Checkpointing strategy

Exponential distribution Any distribution

Limited resources

Incorporating detection

k checkpoints
for 1 verification
k verifications
for 1 checkpoint

Conclusion, future work

The case with limited resources

Obviously, \mathbb{P}_{risk} decreases with T (when X_d is fixed). Hence, $\mathbb{P}_{risk} \leq \varepsilon$ leads to a lower bound T_{min} on T.

We derived an analytical form for \mathbb{P}_{risk} when X_d follows an exponential law. We use this in the following as a good approximation for arbitrary laws.

G. Aupy

Introduction, motivation

Optimal Checkpointing strategy

Exponential distribution Any distribution

Limited resources

Incorporating detection

k checkpoints
for 1 verification
k verifications
for 1 checkpoint

Conclusion, future work

 $T_{\rm opt} \approx 100 {\it min}, \ \mathbb{P}_{\rm risk}(T_{\rm opt}) \approx 38 \cdot 10^{-5}, \ {\rm for \ a \ waste \ of \ } 23.45\%.$

To reduce \mathbb{P}_{risk} to 10^{-4} , a T_{min} of 8000 seconds is sufficient, increasing the waste by only 0.6%. In this case, the benefit of fixing the period to max(T_{opt} , T_{min}) is obvious.

19.0

G. Aupy

Introduction, motivation

Optimal Checkpointing strategy

Exponential distribution Any distribution

Limited resources

Incorporating detection

k checkpoints
for 1 verification
k verifications
for 1 checkpoint

Conclusion, future work More optimistic technologic scenario (smaller C and R):

 T_{opt} is largely reduced (down to less than 35 minutes between checkpoints), but $\mathbb{P}_{risk}(T_{opt})$ climbs to 1/2, an unacceptable value.

To reduce \mathbb{P}_{risk} to 10^{-4} , it becomes necessary to consider a T_{min} of 6650 seconds. The waste increases to 15%, significantly higher than the optimal one, which is below 10%

G. Aupy

Introduction, motivation

Optimal Checkpointing strategy

Exponential distribution Any distribution

Limited resources

Incorporating detection

k checkpoints
for 1 verification
k verifications
for 1 checkpoint

Conclusion, future work

G. Aupy

Limitation of the model

Introduction, motivation

Optimal Checkpointing strategy

Exponential distribution Any distribution

Limited resources

Incorporating detection

k checkpoints
for 1 verification
k verifications
for 1 checkpoint

Conclusion, future work It is not clear how can one detect when the error occured! (hence to identify the last valid checkpoint)

We need a verification mechanism to check the correctness of the checkpoints. This is not free!

A possible solution would be to add artificial verifications: a periodic mechanism that shall verify that there was no silent error in the previous computations.

G. Aupy

Introduction, motivation

Optimal Checkpointing strategy

Exponential distribution Any distribution

Limited resources

Incorporating detection

k checkpoints
for 1 verification
k verifications
for 1 checkpoint

Conclusion, future work

Introduction, motivation

Optimal Checkpointing strategy Exponential distribution Any distribution

3 Limited resources

Incorporating detection

k checkpoints for 1 verification k verifications for 1 checkpoint

5 Conclusion, future work

G. Aupy

Optimal Checkpointing strategy

Exponential distribution Any distribution

Limited resources

Incorporating detection

k checkpoints
for 1 verification
k verifications
for 1 checkpoint

Conclusion, future work We assume there are no errors during the checkpoints (remember Marc Snir's talk: silent data corruption is easy to protect on memory).

The first simple idea is to verify the work before each checkpoint to be sure that there was no corrupted work.

k checkpoints for 1 verification k verifications for 1 checkpoint

Conclusion, future work When V is large compared to w, WASTEFF is large, can we improve that?

for 1 verification k verifications for 1 checkpoint

Conclusion, future work When V is small before w, $WASTE_{Fail}$ is large, can we improve that?

G. Aupy

k checkpoints for 1 verification

Introduction, motivation Optimal Checkpointing strategy

Exponential distribution Any distribution

Limited resources

Incorporating detection

k checkpoints for 1 verification

k verifications for 1 checkpoint

Conclusion, future work

G. Aupy

k checkpoints for 1 verification

Introduction, motivation Optimal Checkpointing

strategy

Exponential distribution Any distribution

Limited resources

Incorporating detection

k checkpoints for 1 verification

k verifications for 1 checkpoint

Conclusion, future work

G. Aupy

k checkpoints for 1 verification

Introduction, motivation Optimal Checkpointing

strategy

Exponential distribution Any distribution

Limited resources

Incorporating detection

k checkpoints for 1 verification

k verifications for 1 checkpoint

Conclusion, future work

G. Aupy

k checkpoints for 1 verification

Introduction, motivation Optimal Checkpointing strategy

Exponential distribution Any distribution

Limited resources

Incorporating detection

k checkpoints for 1 verification

k verifications for 1 checkpoint

Conclusion, future work

G. Aupy

k checkpoints for 1 verification

24.0

Introduction, motivation

Optimal Checkpointing strategy

Exponential distribution Any distribution

Limited resources

Incorporating detection

k checkpoints for 1 verification

k verifications for 1 checkpoint

Conclusion, future work WASTE_{FF} = $\frac{kC + V}{k(w + C) + V}$ WASTE_{Fail} = $\frac{\frac{1}{k} \sum_{i=1}^{k} T_{lost}(i)}{\mu_{e}}$

where $T_{lost}(i)$ is the time lost if the error occured in the i^{th} segment.

Silent error k checkpoints for 1 verification detection G. Aupy V C w C w C w C w C w V C Introduction. motivation Checkpointing strategy Error Exponential distribution С w w С w С w C w VRV Any distribution Time

Incorporating

detection

k checkpoints for 1 verification

k verifications for 1 checkpoint

Conclusion, future work $T_{lost}(k) = R + V + w + V$

24.0 3 • • • • • • • • •

Silent error k checkpoints for 1 verification detection G. Aupy V C w C w C w C w V C Introduction. motivation Checkpointing strategy Error Exponential distribution С w w С w С w С w V R V w VC Any distribution Time Incorporating detection $T_{lost}(k) = R + V + w + V$ k checkpoints for 1 verification k verifications for 1 checkpoint Conclusion.

future work

24.0 3 ° ° ° ° ° ° °

Silent error k checkpoints for 1 verification detection G. Aupy V C w C w C w C w V C Introduction. motivation Checkpointing strategy Error Exponential distribution С w C w w С w С w R V w VC Any distribution Time Incorporating detection $T_{lost}(k) = R + V + w + V$ k checkpoints for 1 verification k verifications $T_{lost}(i) = (k - i + 1)(R + V + w) + (k - i)C + V$ for 1 checkpoint

Conclusion, future work

k checkpoints for 1 verification

Conclusion, future work

Silent error k checkpoints for 1 verification detection G. Aupy V C ... C ... C ... C ... V Introduction. motivation Checkpointing strategy Error Exponential distribution w C w С w С w С w R V w C Any distribution Tíme detection $T_{lost}(k) = R + V + w + V$ k checknoints for 1 verification k verifications $T_{lost}(i) = (k - i + 1)(R + V + w) + (k - i)C + V$ for 1 checkpoint

Conclusion, future work $T_{lost}(i) = (k - i + 1)(R + V + w) + (k - i)C + V$ $T_{lost}(1) = k(R + V + w) - V + (k - 1)C + V$

Finally we are able to compute the optimal solution thanks to this.

24.0

G. Aupy

Introduction, motivation

Optimal Checkpointing strategy

Exponential distribution Any distribution

Limited resources

Incorporating detection

k checkpoints for 1 verification

k verifications for 1 checkpoint

Conclusion, future work

 $C=6s\ll V.$

When V = 100 seconds, a verification is done only every 3 checkpoints optimally. This is 10% improvement compared to k = 1.

25.0

G. Aupy

Introduction, motivation

Optimal Checkpointing strategy

Exponential distribution Any distribution

Limited resources

Incorporating detection

k checkpoints for 1 verification

k verifications for $1\ {\rm checkpoint}$

Conclusion, future work C = 60s is not negligible anymore before V ($V \approx 5C$). The waste is dominated by the cost of the verification, and little improvement can be achieved by taking the optimal value for k.

G. Aupy

Introduction, motivation

Optimal Checkpointing strategy

Exponential distribution Any distribution

Limited resources

Incorporating detection

k checkpoints for 1 verification

k verifications for 1 checkpoint

Conclusion, future work

G. Aupy

Introduction, motivation

Optimal Checkpointing strategy

Exponential distribution Any distribution

Limited resources

Incorporating detection

k checkpoints for 1 verification

k verifications for 1 checkpoint

Conclusion, future work

Very similarly, we obtain:

$$WASTE_{FF} = \frac{kV + C}{k(w + V) + C}$$
$$WASTE_{Fail} = \frac{\frac{1}{k} \sum_{i=1}^{k} T_{lost}(i)}{\mu_{e}}$$
$$T_{lost}(i) = R + i(V + w)$$

where $T_{lost}(i)$ is the time lost if the fault occured in the *i*th segment.

k verifications for 1 checkpoint

26.0 3 • • • • • •

G. Aupy

Introduction, motivation

Optimal Checkpointing strategy

Exponential distribution Any distribution

Limited resources

Incorporating detection

k checkpoints for 1 verification

k verifications for 1 checkpoint

Conclusion, future work

 $V=20s\ll C.$

When C = 600 seconds, five verifications are done for every checkpoint optimally. This is 14% improvement compared to k = 1.

G. Aupy

Introduction, motivation

Optimal Checkpointing strategy

Exponential distribution Any distribution

Limited resources

Incorporating detection

k checkpoints for 1 verification

k verifications for 1 checkpoint

Conclusion, future work

 $V=2s\ll C.$

When C = 60 seconds, five verifications are done every checkpoint optimally. This is 18% improvement compared to k = 1.

27.0

G. Aupy

Introduction, motivation

Optimal Checkpointing strategy

Exponential distribution Any distribution

Limited resources

Incorporating detection

k checkpoints for 1 verification

k verifications for 1 checkpoint

Conclusion, future work

7.0

G. Aupy

Introduction, motivation

Optimal Checkpointing strategy

Exponential distribution Any distribution

Limited resources

Incorporating detection

k checkpoints
for 1 verification
k verifications
for 1 checkpoint

Conclusion, future work

1 Introduction, motivation

Optimal Checkpointing strategy Exponential distribution Any distribution

3 Limited resources

Incorporating detection k checkpoints for 1 verification k verifications for 1 checkpoint

G Conclusion, future work

G. Aupy

Introduction, motivation

Optimal Checkpointing strategy

Exponential distribution Any distribution

Limited resources

Incorporating detection

k checkpoints
for 1 verification
k verifications
for 1 checkpoint

Conclusion, future work

- Study of the optimal checkpointing strategy in presence of silent errors
- Analytical solution for the different probability models
- Study in presence of verification mechanisms

29.0 3 0

G. Aupy

Introduction, motivation

Optimal Checkpointing strategy

Exponential distribution Any distribution

Limited resources

Incorporating detection

k checkpoints for 1 verification k verifications for 1 checkpoint

Conclusion, future work

- Without verification: When we keep k checkpoints in memory, we do not have to keep the k last checkpoints, study of new strategies (fibonacci, binary..)
- *With verifications:* We focused on cases with integer number of checkpoints per verification (or the converse), can we extend that?

Future work

G. Aupy

Introduction, motivation

Optimal Checkpointing strategy

Exponential distribution Any distribution

Limited resources

Incorporating detection

k checkpoints
for 1 verification
k verifications
for 1 checkpoint

Conclusion, future work

Thank you!