

### In Situ Data Analysis and Visualization: **Results with** Damaris and Application to Ensemble Simulations

Matthieu Dorier – ENS Cachan Brittany, IRISA Catalina Nita – U. Politehnica Bucuresti, INRIA

9<sup>th</sup> workshop of the Joint Lab for Petascale Computing Lyon, June 2013

Joint work with: Roberto Sisneros (UIUC), Dave Semeraro (UIUC), Gabriel Antoniu (INRIA), Tom Peterka (ANL)

















- In situ analysis: why and how?
- Results with *Damaris*, CM1 and Nek5000
- In situ analysis of ensemble simulations
- Conclusion





- In situ analysis: why and how?
- Results with *Damaris*, CM1 and Nek5000
- In situ analysis of ensemble simulations
- Conclusion



### In Situ analysis: Why?



- Offline visualization:
  - Run your simulation for days
  - Write a bunch of files periodically, using HDF5, NetCDF, etc.
  - Move the files to an analysis cluster
  - Analyze your data
  - Find something scientifically relevant notice the simulation didn't behave as expected



## In Situ analysis: Why?



#### Motivations

- I/O becoming a bottleneck: need to drastically reduce storage demands
- Migrations of data to a visualization cluster become intractable
- Need to adapt the output format
- Longer, more complex simulations: need to reduce the time-to-insight
- Visualization software also suffer from the I/O bottleneck



# In Situ analysis: Why? Earlier analysis = Faster science



#### In situ visualization:

- Bypassing storage
- Integrating visualization algorithms in the code of the simulation
  - Benefits from data locality, reduced data movements
  - Benefits from already deployed resources
- Send results (images) to the user
  - Direct and immediate access to the results
  - Ease simulation diagnosis



# In Situ visualization: the challenges



#### In situ visualization should

- Be efficient and scalable
- Efficiently use resources co-located with the simulation
- Be easy to integrate in existing simulations
- Be adaptable to different simulations and visualization software





# In Situ analysis: **How?**The "traditional" in situ approach

- Time-partitioning
  - Simulation periodically stops
  - All cores are leveraged to do visualization

OR

- A better way: space-partitioning
  - Using dedicated cores
  - Perform visualization asynchronously





# In Situ analysis: **How?** Recall on the *Damaris* approach

#### Muticore SMP node **Damaris Core** Compute **Metadata Index** Core **External** Gateway Shared Memory Compute Segment Core Plugin A **Event Processing** Plugin B **Engine** Compute **Event Queue** Plugin Core HDF5 Config HDF5

#### Damaris

- Dedicated cores for data management
- Shared-memory based communication model
- Plugin system for data processing
- XML description of data
- Already proven efficient for I/O



## **Damaris** addresses all the challenges

#### In situ visualization should

- Efficiently use resources co-located with the simulation
  - => Damaris uses of shared memory
  - => Damaris uses dedicated cores to reduce the impact on run time
- Be easy to integrate in existing simulations
  - => Damaris uses a simple description of data in XML, including visualization-related structures (meshes, curves, domains...)
- Be adaptable to different simulations and visualization software
  - => Damaris can be connected to VisIt (so far)
  - => Damaris has a plugin system accepting C++ codes or Python scripts
  - => Damaris+VisIt can even be used interactively!
- Be efficient and scalable
  - => Results with Damaris presented in the next section





- In situ analysis: why and how?
- Results with *Damaris*, CM1 and Nek5000
- In situ analysis of ensemble simulations
- Conclusion





### In situ iso-surface of CM1





Experiments on Blue Waters with CM1 (up to 6400 cores / 400 nodes):

Using 400 dedicated cores is as efficient as using all 6400 cores!



## In situ ray-casting of CM1





Experiments on Blue Waters with CM1 (up to 6400 cores / 400 nodes):

Using 400 dedicated cores is 2x more efficient than using all 6400 cores!



## Run time at large scale



Experiments on Grid'5000 with Nek5000 (912 cores):

Using Damaris completely hides the performance impact of in situ visualization





## Impact of interactivity



Experiments on Grid'5000 with Nek5000 (48 cores):

Using Damaris completely hides the run time impact of in situ visualization, even in the presence of user interactivity





# Want a live demo? (just kidding!)

Checkout a demo video at

http://damaris.gforge.inria.fr

- Results submitted to LDAV 2013
  - Available as a research report: RR-8314 A nonintrusive, adaptable and user-friendly in situ visualization framework. Matthieu Dorier, Roberto Sisneros, Tom Peterka, Gabriel Antoniu, Dave Semeraro
- Poster at the PhD forum of IPDPS 2013





- In situ analysis: why and how?
- Results with *Damaris*, CM1 and Nek5000
- In situ analysis of ensemble simulations
- Conclusion



#### **Ensemble simulations**

- Very common use of large-scale simulations
- Many runs,
  - Varying the parameters (most common, parameterized study)
  - Varying the model (model comparison)
  - Varying the numerical method (5<sup>th</sup> to 6<sup>th</sup> order, for instance)
  - Varying the scale (less likely)
- Important in forecasting:
  - Small or medium scale (1K 10k cores), short runs (min hours)
  - Important variations of the results
    - → Model is not robust, forecast unreliable
  - Small variations
    - → Model is robust, forecast reliable





## Examples in climate



Model Analysis and Guidance, Global Ensemble Forecast System - (GEFS-SPAG),
National Weather Service (http://mag.ncep.noaa.gov/)





# Analysis of Ensemble simulations: The "classical" approach



Example with 2 runs

- 1. Complete run A, simulation writes periodically
- 2. Complete run B, simulation writes periodically
- 3. Reload data from A and B into an analysis pipeline





# Analysis of Ensemble simulations: The "in situ" approach



- 1. Complete run A, simulation writes periodically
- 2. Start run B
  - a. At iteration x of run B, reload data from iteration y = f(x) of run A
  - b. In situ analysis of in-memory data from B and loaded data from A



# Challenges of in situ analysis for ensemble simulations

- In situ analysis has been proposed as an alternative to storage
  - Ensemble simulations still require storage
- How to perform in situ analysis of finished runs?
  - Reloading data from previous runs within the current run
- How to efficiently manage resources when reloading data?
- How to make a model understand data from another model?
- How to accommodate for change of scales?
- How to provide an efficient and simple interface for the analysis of many runs?





# Using Damaris for ensemble simulations

- Damaris already provides...
  - ✓ Easy integration in simulations (simple API, XML configuration)
  - ✓ Asynchronous data analysis using dedicated cores
  - ✓ Plugin system for in situ analysis
  - ✓ A connection to visualization tools (VisIt)
- Remaining challenges to address:
  - ☐ Building a metadata-rich persistency layer for Damaris
  - ☐ Making Damaris understand multiple models
  - ☐ "Smart" data management, "smart" resource usage





- In situ analysis: why and how?
- Results with *Damaris*, CM1 and Nek5000
- In situ analysis of ensemble simulations
- Conclusion



### Conclusion

- Damaris provides nonintrusive, efficient, and user-friendly in situ visualization framework
  - Evaluated with CM1 and Nek5000
  - On many platforms including Blue Waters
- Ensemble simulations:
  - Many challenges when it comes to efficiently write, re-load, compare data in a transparent and user-friendly manner
  - Damaris provides a good basis to address some of these challenges

Questions?