Energy-efficient scheduling

Guillaume Aupy¹, Anne Benoit^{1,2},
Paul Renaud-Goud¹ and Yves Robert^{1,2,3}

- 1. Ecole Normale Supérieure de Lyon, France
 - 2. Institut Universitaire de France
 - 3. University of Tennessee Knoxville, USA

```
Anne.Benoit@ens-lyon.fr
http://graal.ens-lyon.fr/~abenoit/
```

9th Workshop of the INRIA-Illinois-ANL Joint Lab on Petascale Computing

Energy: a crucial issue

- Data centers
 - 330, 000, 000, 000 Watts hour in 2007: more than France
 - 533,000,000 tons of CO_2 : in the top ten countries
- Exascale computers (10¹⁸ floating operations per second)
 - Need effort for feasibility
 - ullet 1% of power saved \leadsto 1 million dollar per year
- Lambda user
 - 1 billion personal computers
 - 500, 000, 000, 000, 000 Watts hour per year
- ~ crucial for both environmental and economical reasons

Energy: a crucial issue

Data centers

- 330, 000, 00
- 533,000,00
- Exascale compu
 - Need effort
 - 1% of powe
- Lambda user
 - 1 billion per
 - 500,000,00

nore than France n countries

ons per second)

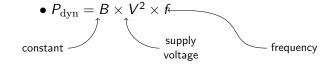
r year

ear

• ~ crucial for both environmental and economical reasons

Power dissipation of a processor

- $P = P_{\text{leak}} + P_{\text{dyn}}$
 - P_{leak} : constant



- Standard approximation: $P = P_{\text{leak}} + f^{\alpha}$ $(2 \le \alpha \le 3)$
- Energy $E = P \times time$
- Dynamic Voltage and Frequency Scaling
 - Real life: discrete speeds
 - Continuous speeds can be emulated

Outline

- Revisiting the greedy algorithm for independent jobs
- 2 Reclaiming the slack of a schedule
- Tri-criteria problem: execution time, reliability, energy
- 4 Checkpointing and energy consumption
- Conclusion

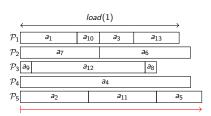
Framework

Scheduling independent jobs

- Greedy algorithm: assign next job to least-loaded processor
- Two variants:
 - ONLINE-GREEDY: assign jobs on the fly OFFLINE-GREEDY: sort jobs before execution

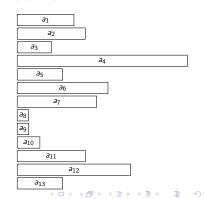
Classical problem

- *n* independent jobs $\{J_i\}_{1 \le i \le n}$, $a_i = \text{size of } J_i$
- p processors $\{\mathcal{P}_q\}_{1 \leq q \leq p}$
- allocation function $alloc: \{J_i\} \to \{\mathcal{P}_q\}$
- ullet load of $\mathcal{P}_q = load(q) = \sum_{\{i \mid alloc(J_i) = \mathcal{P}_q\}} a_i$



Execution time:

$$\max_{1 < q < p} load(q)$$



OnLine-Greedy

Theorem

OnLine-Greedy is a $2 - \frac{1}{p}$ approximation (tight bound)

OnLine-Greedy

\mathcal{P}_1			5		
\mathcal{P}_2	1	1	1	1	1
\mathcal{P}_3	1	1	1	1	1
\mathcal{P}_4	1	1	1	1	1
\mathcal{P}_5	1	1	1	1	1

Optimal solution

OffLine-Greedy

Theorem

OffLine-Greedy is a $\frac{4}{3} - \frac{1}{3p}$ approximation (tight bound)

\mathcal{P}_1	9	5	5
\mathcal{P}_2	9	5	
\mathcal{P}_3	8	6	
\mathcal{P}_4	8	6	
\mathcal{P}_5	7	7	

 \mathcal{P}_1

5	5	5
0		C

 $\begin{array}{c|cccc} \mathcal{P}_2 & 9 & 6 \\ \mathcal{P}_3 & 9 & 6 \end{array}$

 \mathcal{P}_4 8 7

 \mathcal{P}_5 8 7

OffLine-Greedy

Optimal solution

Bi-criteria problem

• Minimizing (dynamic) power consumption:

$$\Rightarrow$$
 use slowest possible speed

$$P_{dyn} = f^{\alpha} = f^3$$

Bi-criteria problem:

Given bound M=1 on execution time, minimize power consumption while meeting the bound

Conclusion

Bi-criteria problem statement

- *n* independent jobs $\{J_i\}_{1 \le i \le n}$, $a_i = \text{size of } J_i$
- p processors $\{\mathcal{P}_a\}_{1 \leq a \leq p}$
- allocation function alloc : $\{J_i\} \to \{\mathcal{P}_a\}$
- load of $\mathcal{P}_q = load(q) = \sum_{\{i \mid alloc(I_i) = \mathcal{P}_q\}} a_i$

 $(load(q))^3$ power dissipated by \mathcal{P}_q

$$\sum_{q=1}^{p} (load(q))^{3} \quad \max_{1 \leq q \leq p} load(q)$$
Power Execution time

Execution time

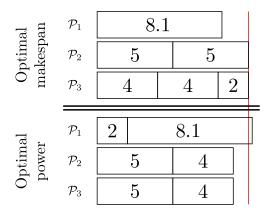
Same GREEDY algorithm ...

Strategy: assign next job to least-loaded processor

- Natural for execution-time
 - smallest increment of maximum load
 - minimize objective value for currently processed jobs

- Natural for power too
 - smallest increment of total power (convexity)
 - minimize objective value for currently processed jobs

... but different optimal solution!



- Makespan 10, power 2531.441
- Makespan 10.1, power 2488.301

GREEDY and L_r norms

$$N_r = \left(\sum_{q=1}^p (load(q))^r\right)^{\frac{1}{r}}$$

- Execution time $N_{\infty} = \lim_{r \to \infty} N_r = \max_{1 \le q \le p} load(q)$
- Power $(N_3)^3$

Known results

N_2 , OffLine-Greedy

- Chandra and Wong 1975: upper and lower bounds
- Leung and Wei 1995: tight approximation factor

N₃, OffLine-Greedy

Chandra and Wong 1975: upper and lower bounds

N_r

- Alon et al. 1997: PTAS for offline problem
- Avidor et al. 1998: upper bound $2 \Theta(\frac{\ln r}{r})$ for ONLINE-GREEDY

Contribution

 N_3

- Tight approximation factor for OnLine-Greedy
- Tight approximation factor for OffLine-Greedy

Greedy for power fully solved!

Approximation for OnLine-Greedy

$$\frac{P_{\text{online}}}{P_{\text{opt}}} \leq \underbrace{\frac{\frac{1}{p^3} \left(\left(1 + (p-1)\beta\right)^3 + (p-1)\left(1-\beta\right)^3 \right)}{\beta^3 + \frac{\left(1-\beta\right)^3}{(p-1)^2}}}_{f_p^{(\text{on})}(\beta)}$$

$\mathsf{Theorem}$

- $f_p^{(\text{on})}$ has a single maximum in $\beta_p^{(\text{on})} \in [\frac{1}{p}, 1]$
- Online-Greedy is a $f_p^{(on)}(\beta_p^{(on)})$ approximation
- This approximation factor is tight

Approximation for OffLine-Greedy

$$\frac{P_{\text{offline}}}{P_{\text{opt}}} \leq \underbrace{\frac{\frac{1}{p^3} \left(\left(1 + \frac{(p-1)\beta}{3}\right)^3 + \left(p-1\right) \left(1 - \frac{\beta}{3}\right)^3 \right)}{\beta^3 + \frac{(1-\beta)^3}{(p-1)^2}}}_{f_p^{(\text{off})}(\beta)}$$

Theorem

- $f_p^{(\text{off})}$ has a single maximum in $\beta_p^{(\text{off})} \in [\frac{1}{p}, 1]$
- ullet OffLine-Greedy is a $f_p^{
 m (off)}(eta_p^{
 m (off)})$ approximation
- This approximation factor is tight

Numerical values of approximation ratios

р	OnLine-Greedy	OffLine-Greedy
2	1.866	1.086
3	2.008	1.081
4	2.021	1.070
5	2.001	1.061
6	1.973	1.054
7	1.943	1.048
8	1.915	1.043
64	1.461	1.006
512	1.217	1.00083
2048	1.104	1.00010
2^{24}	1.006	1.000000025

Large values of p

Asymptotic approximation factor

```
OnLine-Greedy \frac{4}{3} 1
OffLine-Greedy 2 1
\uparrow
optimal
```


Outline

- Revisiting the greedy algorithm for independent jobs
- 2 Reclaiming the slack of a schedule
- Tri-criteria problem: execution time, reliability, energy
- 4 Checkpointing and energy consumption
- Conclusion

Motivation

- Mapping of tasks is given (ordered list for each processor and dependencies between tasks)
- If deadline not tight, why not take our time?
- Slack: unused time slots

Goal: efficiently use speed scaling (DVFS)

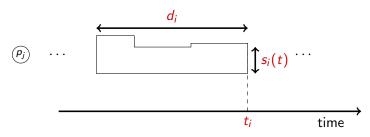
Speed models

		Change speed	
		Anytime	Beginning of tasks
Type of speeds	$[s_{\min}, s_{\max}]$	Continuous	-
	$\{s_1,, s_m\}$	VDD-HOPPING	Discrete, Incremental

- CONTINUOUS: great for theory
- Other "discrete" models more realistic
- VDD-HOPPING simulates CONTINUOUS
- Incremental is a special case of Discrete with equally-spaced speeds: for all $1 \leq q < m$, $s_{q+1} s_q = \delta$

Tasks

- DAG: $\mathcal{G} = (V, E)$
- n = |V| tasks T_i of weight $w_i = \int_{t_i d_i}^{t_i} s_i(t) dt$
- d_i : task duration; t_i : time of end of execution of T_i



Parameters for T_i scheduled on processor p_i

Makespan

Assume T_i is executed at constant speed s_i

$$d_i = \mathcal{E} xe(w_i, s_i) = \frac{w_i}{s_i}$$

$$t_j + d_i \le t_i$$
 for each $(T_j, T_i) \in E$

Constraint on makespan:

$$t_i \leq D$$
 for each $T_i \in V$

Energy

Energy to execute task T_i once at speed s_i :

$$E_i(s_i) = d_i s_i^3 = w_i s_i^2$$

→ Dynamic part of classical energy models

Bi-criteria problem

- Constraint on deadline: $t_i \leq D$ for each $T_i \in V$
- Minimize energy consumption: $\sum_{i=1}^{n} w_i \times s_i^2$

Complexity results

Minimizing energy with fixed mapping on *p* processors:

- CONTINUOUS: Polynomial for some special graphs, geometric optimization in the general case
- DISCRETE: NP-complete (reduction from 2-partition);
 approximation algorithm
- INCREMENTAL: NP-complete (reduction from 2-partition); approximation algorithm
- VDD-HOPPING: Polynomial (linear programming)

Summary

- Results for Continuous, but not very practical
- In real life, DISCRETE model (DVFS)
- VDD-HOPPING: good alternative, mixing two consecutive modes, smoothes out the discrete nature of modes
- INCREMENTAL: alternate (and simpler in practice) solution, with one unique speed during task execution; can be made arbitrarily efficient

Outline

- 1 Revisiting the greedy algorithm for independent jobs
- 2 Reclaiming the slack of a schedule
- 3 Tri-criteria problem: execution time, reliability, energy
- 4 Checkpointing and energy consumption
- Conclusion

Tri-criteria

Conclusion

• DAG: $\mathcal{G} = (V, E)$

Greedy

• n = |V| tasks T_i of weight w_i

- p identical processors fully connected
- DVFS: interval of available continuous speeds $[s_{min}, s_{max}]$
- One speed per task

• (I will not discuss results for the VDD-HOPPING model)

Makespan

Execution time of T_i at speed s_i :

$$d_i = \frac{w_i}{s_i}$$

If T_i is executed twice on the same processor at speeds s_i and s'_i :

$$d_i = \frac{w_i}{s_i} + \frac{w_i}{s_i'}$$

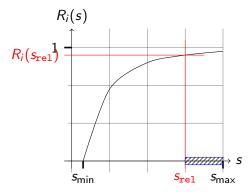
Constraint on makespan:

end of execution before deadline D

Conclusion

Reliability

- Transient fault: local, no impact on the rest of the system
- Reliability R_i of task T_i as a function of speed s
- Threshold reliability (and hence speed s_{rel})



Re-execution: a task is re-executed on the same processor, just after its first execution

With two executions, reliability R_i of task T_i is:

$$R_i = 1 - (1 - R_i(s_i))(1 - R_i(s_i'))$$

Constraint on reliability:

Reliability: $R_i \ge R_i(s_{rel})$, and at most one re-execution

Energy

• Energy to execute task T_i once at speed s_i :

$$E_i(s_i) = w_i s_i^2$$

Tri-criteria

- → Dynamic part of classical energy models
- With re-executions, it is natural to take the worst-case scenario:

Energy:
$$E_i = w_i \left(s_i^2 + s_i'^2 \right)$$

Conclusion

TRI-CRIT-CONT

Greedy

Given
$$G = (V, E)$$

Find

- A schedule of the tasks
- A set of tasks $I = \{i \mid T_i \text{ is executed twice}\}$
- Execution speed s_i for each task T_i
- Re-execution speed s'_i for each task in I

such that

$$\sum_{i \in I} w_i (s_i^2 + s_i'^2) + \sum_{i \notin I} w_i s_i^2$$

is minimized, while meeting reliability and deadline constraints

Complexity results

- One speed per task
- Re-execution at same speed as first execution, i.e., $s_i = s_i'$

- TRI-CRIT-CONT is NP-hard even for a linear chain, but not known to be in NP (because of CONTINUOUS model)
- Polynomial-time solution for a fork

Energy-reducing heuristics

Two steps:

- Mapping (NP-hard) → List scheduling
- Speed scaling + re-execution (NP-hard) → Energy reducing

- The list-scheduling heuristic maps tasks onto processors at speed s_{max} , and we keep this mapping in step two
- Step two = slack reclamation! Use of deceleration and re-execution

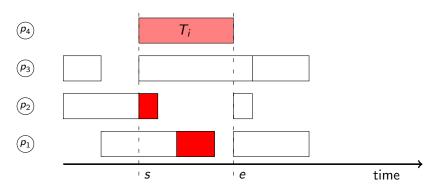
Deceleration and re-execution

• Deceleration: select a set of tasks that we execute at speed $\max(s_{\texttt{rel}}, s_{\texttt{max}} \frac{\max_{i=1..n} t_i}{D})$: slowest possible speed meeting both reliability and deadline constraints

• Re-execution: greedily select tasks for re-execution

Super-weight (SW) of a task

- SW: sum of the weights of the tasks (including T_i) whose execution interval is included into T_i 's execution interval
- SW of task slowed down = estimation of the total amount of work that can be slowed down together with that task



Selected heuristics

- A.SUS-Crit: efficient on DAGs with low degree of parallelism
 - Set the speed of every task to $\max(s_{rel}, s_{max} \frac{\max_{i=1...n} t_i}{D})$
 - Sort the tasks of every critical path according to their SW and try to re-execute them
 - Sort all the tasks according to their weight and try to re-execute them
- B.SUS-Crit-Slow: good for highly parallel tasks: re-execute, then decelerate
 - Sort the tasks of every critical path according to their SW and try to re-execute them. If not possible, then try to slow them down
 - Sort all tasks according to their weight and try to re-execute them. If not possible, then try to slow them down

Results

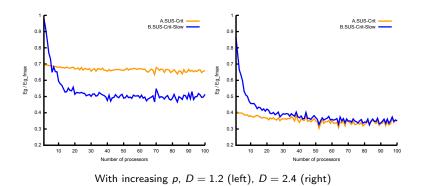
We compare the impact of:

- the number of processors p
- the ratio D of the deadline over the minimum deadline D_{\min} (given by the list-scheduling heuristic at speed s_{\max})

on the output of each heuristic

Results normalized by heuristic running each task at speed s_{max} ; the lower the better

Results



- A better when number of processors is small
- B better when number of processors is large
- Superiority of B for tight deadlines: decelerates critical tasks that cannot be re-executed

Summary

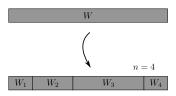
- Tri-criteria energy/makespan/reliability optimization problem
- Various theoretical results
- Two-step approach for polynomial-time heuristics:
 - List-scheduling heuristic
 - Energy-reducing heuristics
- Two complementary energy-reducing heuristics for TRI-CRIT-CONT

Outline

- 1 Revisiting the greedy algorithm for independent jobs
- 2 Reclaiming the slack of a schedule
- Tri-criteria problem: execution time, reliability, energy
- 4 Checkpointing and energy consumption
- Conclusion

Framework

- Execution of a divisible task (W operations)
- Failures may occur
 - Transient faults
 - Resilience through checkpointing
- Objective: minimize expected energy given a deadline bound
- Decisions before execution:
 - Chunks: how many (n)? which sizes $(W_i \text{ for chunk } i)$?
 - Speeds of each chunk: first run (s_i) ? re-execution (σ_i) ?

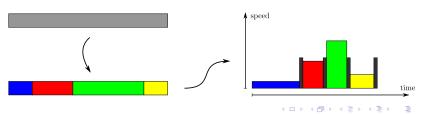




Framework

Execution of a divisible task (W operations)

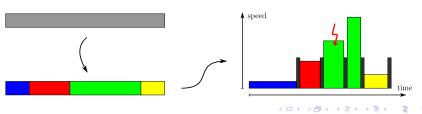
- Failures may occur
 - Transient faults
 - Resilience through checkpointing
- Objective: minimize expected energy given a deadline bound
- Decisions before execution:
 - Chunks: how many (n)? which sizes $(W_i \text{ for chunk } i)$?
 - Speeds of each chunk: first run (s_i) ? re-execution (σ_i) ?



Framework

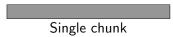
Execution of a divisible task (W operations)

- Failures may occur
 - Transient faults
 - Resilience through checkpointing
- Objective: minimize expected energy given a deadline bound
- Decisions before execution:
 - Chunks: how many (n)? which sizes $(W_i \text{ for chunk } i)$?
 - Speeds of each chunk: first run (s_i) ? re-execution (σ_i) ?



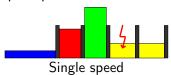
Models

Chunks



VS

Speed per chunk

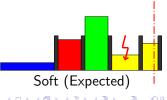


VS

Deadline bound



VS



Summary of results: single chunk

- Single speed
 - $s \mapsto \mathbb{E}(E)$ convex (expected energy consumption)
 - $s \mapsto \mathbb{E}(T)$ (expected execution time) and $s \mapsto T_{wc}$ (worst-case execution time) decreasing
 - ightarrow Expression of s and $\mathbb{E}(E)$ (function of λ, W, s, E_c, T_c)

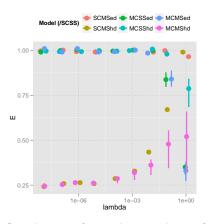
- Multiple speeds
 - Energy minimized when deadline tight
 - $\sim \sigma$ expressed as a function of s
 - → Minimization of single-variable function

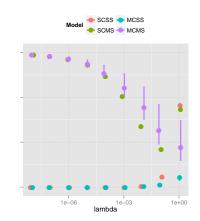
Summary of results: multiple chunks

- Single speed
 - Equal-sized chunks, executed at same speed
 - Bound on s given n
 - → Minimization of double-variable function

- Multiple speeds
 - Conjecture: equal-sized chunks, same first-execution / re-execution speeds
 - σ as a function of s, bound on s given n
 - → Minimization of double-variable function

Comparison





Conclusions for realistic values of λ :

- ullet Expected deadline constraint o use 1 chunk, 1 speed
- Hard deadline constraint → use multiple speeds anytime, multiple chunks if frequent failures

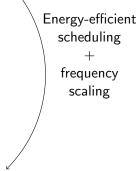
Outline

- Revisiting the greedy algorithm for independent jobs
- 2 Reclaiming the slack of a schedule
- Tri-criteria problem: execution time, reliability, energy
- 4 Checkpointing and energy consumption
- Conclusion

Conclusion

- ONLINE-GREEDY and OFFLINE-GREEDY for power: tight approximation factor for any p, extends long series of papers and completely solves N₃ minimization problem
- Different energy models, from continuous to discrete (through VDD-hopping and incremental)
- Tri-criteria heuristics with replication to deal with reliability
- Checkpointing techniques for reliability while minimizing energy consumption

What we had:



What we aim at:

