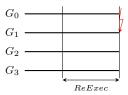
Multi-criteria Checkpointing Strategies: Response-time versus Resource Utilization

Aurélien BOUTEILLER¹, Franck CAPPELLO², Jack DONGARRA¹, Amina GUERMOUCHE³, Thomas HÉRAULT¹, Yves ROBERT^{1,4},

University of Tennessee Knoxville, USA
 INRIA & University of Illinois at Urbana Champaign, USA
 Université de Versailles Saint Quentin, France
 Ecole Normale Supérieure de Lyon & INRIA, France

June 13^{th} , 2013


Protocol overhead	Application scenario	Platform scenario	Instantiating the model	Simulations
Introduction	l			

- Very very large number of processing elements (e.g., 2²⁰)
 ⇒ Probability of failures dramatically increases
- Large application to be executed on whole platform
 ⇒ Failure(s) will most likely occur before completion!
- Resilience provided through checkpointing
 - Coordinated checpkointing protocols
 I/O overhead
 - 2 Uncoordinated checkpointing protocols with message logging
 - ightarrow Hierarchical checkpointing protocols

Protocol overhead	Application scenario	Platform scenario	Instantiating the model	Simulations
Introduction	า			

Hierarchical protocols:

- $\ensuremath{\textcircled{}^\circ}$ A subset of processes roll back
 - Overlap recovery and normal execution
 - Tightly coupled applications:
 - Non-rolled back processes have to wait
 - Execute another application during recovery
 - The failed group recovers
 - The non failed groups load and execute another application
 - ☺ Improve platform efficiency

Protocol overhead	Application scenario	Platform scenario	Instantiating the model	Simulations 000
Introduction	1			

1 Application-oriented scenario:

- Non failed processes wait for the recovering ones
- The application is executed on G+1 groups

2 Platform-oriented scenario:

- The application is executed on G groups
- A spare group is used for recovery
- The G groups are used to execute another application while the spare group is recovering

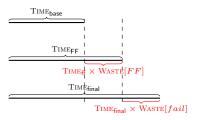
Protocol overhead	Application scenario	Platform scenario	Instantiating the model	Simulations
Framework				

- Periodic checkpointing policies (of period *T*)
- Independent and identically distributed failures
- Platform failure inter-arrival time: μ
- Tightly-coupled application: progress ⇔ all processors available
- First-order approximation: at most one failure within a period

Waste: fraction of time not spent for useful computations

- Application waste: fraction of time the processes do not execute the application
- 2 Platform waste: fraction of time the resources are not used to perform useful work

Protocol overhead	Application scenario	Platform scenario	Instantiating the model $\circ\circ$	Simulations
Waste				

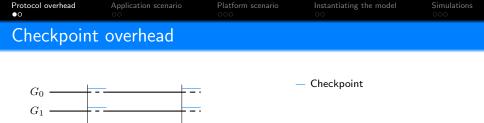

- $TIME_{base}$: application base time
- TIME_{FF}: with periodic checkpoints but failure-free
- TIME_{final}: expectation of time with failures

$$(1 - \text{Waste}[FF])$$
Time_{ff} = Time_{base}

$$(1 - \text{Waste}[fail])\text{Time}_{final} = \text{Time}_{FF}$$

$$\mathrm{WASTE} = \frac{\mathrm{TIME}_{\mathsf{final}} - \mathrm{TIME}_{\mathsf{base}}}{\mathrm{TIME}_{\mathsf{final}}}$$

WASTE = 1 - (1 - WASTE[FF])(1 - WASTE[fail])

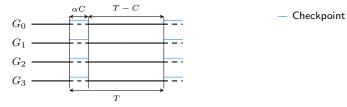


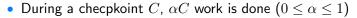
Protocol overhead	Application scenario	Platform scenario	Instantiating the model	Simulations
Outline				

1 Protocol overhead

- Application scenario
- **3** Platform scenario
- Instantiating the model

G Simulations

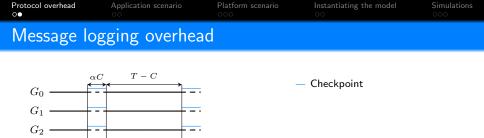



• During a checpkoint C, αC work is done $(0 \le \alpha \le 1)$

T

 G_2 G_3

• The amount of computation executed in a Period T: $Work = \alpha C + T - C$

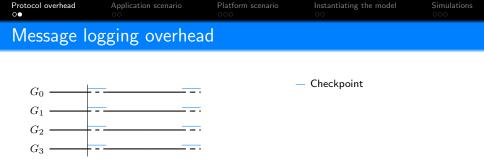


• During a checpkoint C, αC work is done $(0 \le \alpha \le 1)$

T

 G_2 G_3

> • The amount of computation executed in a Period T: $Work = \alpha C + T - C$


• During a checpkoint C, αC work is done $(0 \le \alpha \le 1)$

T

 G_3

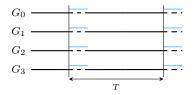
- The amount of computation executed in a Period T: $Work = \alpha C + T - C$
- Message logging slows down the execution with a factor λ (0 $<\lambda<1)$:

The amount of computation executed in a Period T: $\lambda Work$

- During a checpkoint C, αC work is done $(0 \le \alpha \le 1)$
- The amount of computation executed in a Period T: $\lambda Work = \lambda(\alpha C + T C)$

- During a checpkoint C, αC work is done $(0 \le \alpha \le 1)$
- The amount of computation executed in a Period T: $\lambda Work = \lambda(\alpha C + T C)$

- During a checpkoint C, αC work is done $(0 \le \alpha \le 1)$
- The amount of computation executed in a Period T: $\lambda Work = \lambda(\alpha C + T C)$
- The amount of work to re-execute is *ReExec*



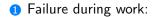
- During a checpkoint C, αC work is done $(0 \le \alpha \le 1)$
- The amount of computation executed in a Period T: $\lambda Work = \lambda(\alpha C + T - C)$
- The amount of work to re-execute is *ReExec*
- Message logging speeds up the re-execution with a factor ρ (1 < ρ < 2): It takes $\frac{ReExec}{\rho}$ to execute ReExec

Protocol overhead	Application scenario	Platform scenario	Instantiating the model	Simulations
Outline				

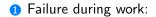
- Protocol overhead
- 2 Application scenario
- **3** Platform scenario
- Instantiating the model
- Simulations

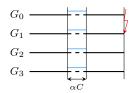
Protocol overhead	Application scenario ●0	Platform scenario	Instantiating the model	Simulations
Waste in t	the absence of	failures		

• T work should be done


•
$$\lambda Work = \lambda (T - C + \alpha C)$$
 is done
WASTE $[ff] = \frac{T - \lambda Work}{T}$

Protocol overhead ○○	Application scenario ○●	Platform scenario	Instantiating the model	Simulations
Waste in	case of failures			


Protocol overhead	Application scenario ○●	Platform scenario	Instantiating the model	Simulations
Waste in c	case of failures	;		

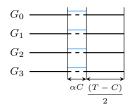


Protocol overhead ○○	Application scenario ○●	Platform scenario	Instantiating the model ○○	Simulations
Waste in o	case of failures			

Protocol overhead ○○	Application scenario ⊙●	Platform scenario	Instantiating the model	Simulations
Waste in o	case of failures			

1 Failure during work:

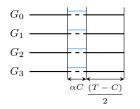
 $ReExec1 = \alpha C$


Protocol overhead ○○	Application scenario ○●	Platform scenario	Instantiating the model	Simulations
Waste in o	case of failures			

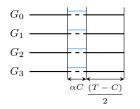
1 Failure during work:

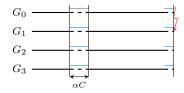
$$ReExec1 = \alpha C + \frac{T-C}{2}$$

Probability: $\frac{T-C}{T}$

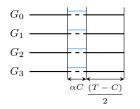


2 Failure during checkpoint:

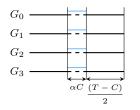

Protocol overhead ○○	Application scenario ○●	Platform scenario	Instantiating the model	Simulations
Waste in o	case of failures	;		

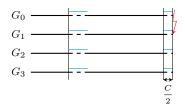


2 Failure during checkpoint:


Protocol overhead	Application scenario ○●	Platform scenario	Instantiating the model	Simulations
Waste in o	case of failures			

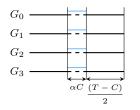
2 Failure during checkpoint: $ReExec2 = \alpha C$

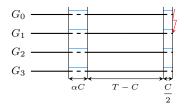

Protocol overhead ○○	Application scenario ⊙●	Platform scenario	Instantiating the model	Simulations
Waste in o	case of failures			



 G_0 G_1 G_2 G_3 T-C

1 Failure during work: $ReExec1 = \alpha C + \frac{T-C}{2}$ Probability: $\frac{T-C}{T}$ **2** Failure during checkpoint: $ReExec2 = \alpha C + T - C$


Protocol overhead ○○	Application scenario ○●	Platform scenario	Instantiating the model	Simulations 000
Waste in c	ase of failures			



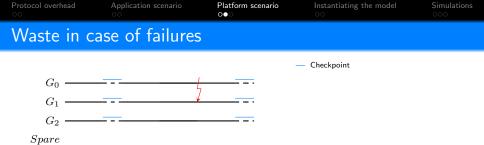
2 Failure during checkpoint: $ReExec2 = \alpha C + T - C + \frac{C}{2}$ Probability: $\frac{C}{T}$

Protocol overhead ○○	Application scenario ○●	Platform scenario	Instantiating the model	Simulations 000
Waste in c	ase of failures			

1 Failure during work:2 Failure during checkpoint: $ReExec1 = \alpha C + \frac{T-C}{2}$ $ReExec2 = \alpha C + T - C + \frac{C}{2}$ Probability: $\frac{T-C}{T}$ Probability: $\frac{C}{T}$

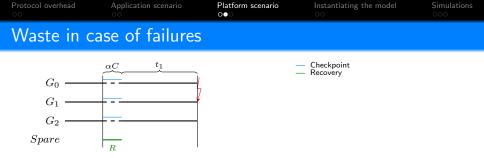
$$WASTE[fail] = \frac{1}{\mu} [D + R + \frac{T - C}{T} \times \frac{ReExec1}{\rho} + \frac{T}{C} \times \frac{ReExec2}{\rho}]$$


Protocol overhead	Application scenario	Platform scenario	Instantiating the model	Simulations
Outline				


- Protocol overhead
- Application scenario
- **3** Platform scenario
- Instantiating the model
- G Simulations

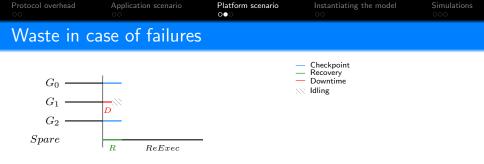
Protocol overhead	Application scenario	Platform scenario ●○○	Instantiating the model	Simulations
Framework				

- G+1 available groups
- G groups used to run the application
- A spare group used for the rollback
 - Longer time needed to compute the same amount of work
 - Longer checkpoint duration (by a factor of ${G+1\over G}$)

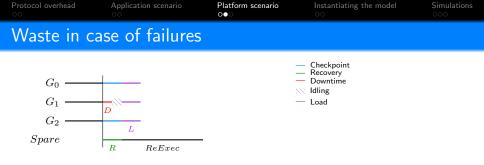

$$\begin{aligned} \text{WASTE} = \quad \frac{1}{G+1} + \frac{G}{G+1} (\\ \text{WASTE}[ff] + \text{WASTE}[fail] \\ - \text{WASTE}[ff] \text{WASTE}[fail]) \end{aligned}$$

Protocol overhead ○○	Application scenario	Platform scenario ○●○	Instantiating the model	Simulations
Waste in	case of failures			
			— Checkpoint	
$G_0 \longrightarrow G_1 \longrightarrow G_1$				

 G_2 Spare



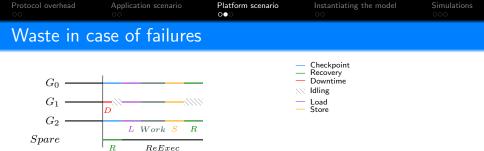
• The spare group restarts from the checkpoint



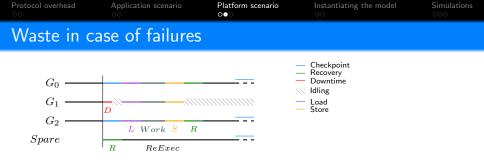
• The spare group restarts from the checkpoint

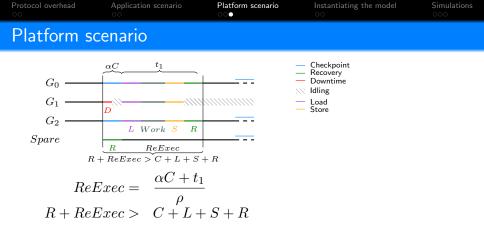
•
$$ReExec = \alpha C + t_1$$

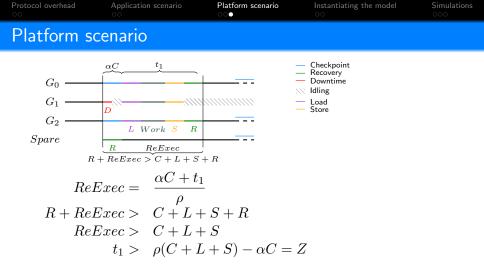
The non failed groups checkpoint

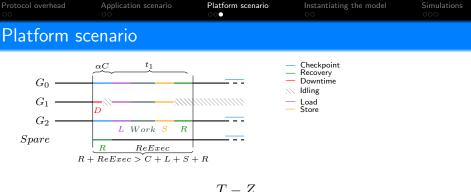

• They load the other application from its checkpoint

Protocol overhead ○○	OO	Platform scenario ○●○	Instantiating the model	Simulations
Waste in c	ase of failures			
$G_0 \longrightarrow G_1 \longrightarrow G_2 \longrightarrow G_2 \longrightarrow Spare$	D L Work R ReExec		 Checkpoint Recovery Downtime Idling Load 	


DI


• They store the work they did


- They reload the other application
- The faulty group becomes the spare group


Protocol overhead	Application scenario	Platform scenario ○●	Instantiating the model	Simulations
Platform s	scenario			
$G_0 - G_1 - G_2 - G_2 - G_2 - G_2$ Spare Re	$\frac{\alpha C}{D} \xrightarrow{t_1} D$ $\frac{L Work S R}{R eExec}$ $eExec = \frac{\alpha C + t}{\rho}$		 Checkpoint Recovery Downtime Idling Load Store 	

Protocol overhead	Application scenario	Platform scenario ○●	Instantiating the model	Simulations
Platform so	cenario			
Rel R + Rel	$\frac{\alpha C}{D} \xrightarrow{t_1} D$ $\frac{L Work S R}{R ReExec}$ $+ ReExec > C + L + S$ $Exec > C + L + S$ $Exec > C + L + S$	+S+R	 Checkpoint Recovery Downtime Idling Load Store 	

Protocol overhead ○○	Application scenario	Platform scenario ○●	Instantiating the model	Simulations
Platform s	cenario			
Re R + Re	$\frac{\alpha C}{L \text{ Work } S \text{ R}}$ $\frac{R}{R} + ReE E xec > C + L + S$ $\frac{\alpha C + t}{\rho}$ $E xec > C + L + C$ $E xec > C + L + C$ $E xec > C + L + C$ $t_1 > \rho(C + L)$ $t_1 > Z$	$\frac{1}{1} + S + R$	 Checkpoint Recovery Downtime Idling Load Store 	

•
$$t_1 > Z$$
 with a probability $\frac{T-Z}{T}$
The G groups loose $L + C + S + R = X$

Protocol overhead	Application scenario	Platform scenario ○●	Instantiating the model	Simulations
Platform s	scenario			
$G_0 \longrightarrow$ $G_1 \longrightarrow$ $G_2 \longrightarrow$ Spare	$\begin{array}{c} \alpha C & t_1 \\ \hline D \\ \hline L & Work & S & R \\ \hline R & ReExec \\ R + ReExec > C + L + S \end{array}$	+ R	 Checkpoint Recovery Downtime Idling Load Store 	
• t ₁ <	> Z with a probabi The G groups loos $\langle = Z$ with a proba The G groups loos The expectation of	e $L + C + S + L$ bility $\frac{Z}{T}$: e $R + ReExec$	R = X	

Platform scenario
Platform scenario
Platform scenario

$$G_{0} \xrightarrow{\alpha C} \underbrace{t_{1}}_{L \text{ Work } S \text{ R}} \xrightarrow{\alpha C}_{R + ReExec} \xrightarrow{\alpha C}_{L + S + R}$$

$$f_{1} > Z \text{ with a probability } \frac{T - Z}{T}$$
The *G* groups loose $L + C + S + R = X$
• $t_{1} <= Z$ with a probability $\frac{Z}{T}$:
• The *G* groups loose $R + ReExec$
• The expectation of t_{1} is $\frac{Z}{2}$
WASTE[$fail$] = $\frac{1}{\mu} [\frac{T - Z}{T} \times X + \frac{Z}{T} \times (R + \frac{X - R}{2} + \frac{\alpha C}{2\rho}]$

Protocol overhead	Application scenario	Platform scenario	Instantiating the model	Simulations
Outline				

- Protocol overhead
- Application scenario
- **3** Platform scenario
- **4** Instantiating the model
- G Simulations

Protocol overhead	Application scenario	Platform scenario	Instantiating the model	Simulations
Model insta	antiation			

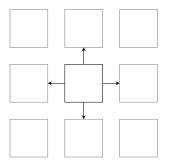
- 1 Applications
 - 2D-stencil
 - Matrix product
- 2 Platforms
 - K-Computer
 - ExaScaleFat

- Inter-groups messages logged continuously
- Checkpoint size increases with amount of work executed before a checkpoint
- C_0 : Checkpoint size of a group without message logging

$$C = C_0(1 + \beta \text{WORK}) \Leftrightarrow \beta = \frac{C - C_0}{C_0 \text{WORK}}$$

WORK =
$$\lambda (T - (1 - \alpha)GC)$$

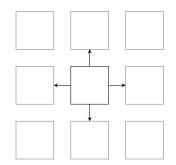
$$C = \frac{C_0(1 + \beta\lambda T)}{1 + GC_0\beta\lambda(1 - \alpha)}$$



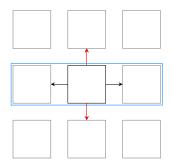
 $C = C_0 + Logged_M sg = C_0(1 + \beta WORK)$

•
$$C_0 = \frac{Mem}{G}$$

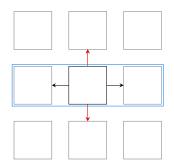
• Real matrix
$$n \times n$$


•
$$Mem = 8n^2$$

 $C = C_0 + Logged_M sg = C_0(1 + \beta WORK)$


- $C_0 = \frac{Mem}{G}$
- s_p: speed of the process
- Block update: 9 floating points operations
- Each process holds a block of size b
- $Work = \frac{9b^2}{s_p}$

 $C = C_0 + Logged_M sg = C_0(1 + \beta \text{Work})$

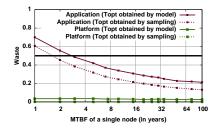

- $C_0 = \frac{Mem}{G}$ • $Work = \frac{9b^2}{s_p}$
- 1 group = 1 line
- Each process sends a block to its 4 neighbors
 - 2 out of the 4 messages are logged

 $C = C_0 + Logged_M sg = C_0(1 + \beta WORK)$

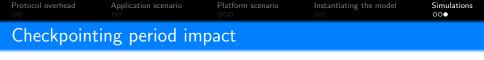
• $C_0 = \frac{Mem}{G}$ • $Work = \frac{9b^2}{s_p}$ • 2 out of the 4 messages are logged • $\beta = \frac{2s_p}{9b^3}$

Protocol overhead	Application scenario	Platform scenario	Instantiating the model	Simulations
Outline				

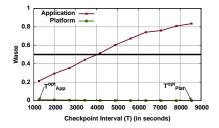
- Protocol overhead
- Application scenario
- **3** Platform scenario
- Instantiating the model


5 Simulations

Protocol overhead ○○	Application scenario	Platform scenario	Instantiating the model ○○	Simulations •00
Simulation	parameters			


- Failure distribution: Weibull, k = 0.7
- Failure free execution on each process: 4 days
- Time-out: 1 year
- No assumption on failures
- $\alpha = 0.3$, $\rho = 1.5$, $\lambda = 0.98$
- Each point: average over 20 randomly generated instances
- Computed period and best period:
- $\rightarrow\,$ Generate 480 periods in the neighborhood of the period from the model
- $\rightarrow\,$ Numerically evaluate the best one through simulations

Protocol overhead ○○	Application scenario	Platform scenario	Instantiating the model	Simulations 0●0
Waste com	parison			


- Solid line: Computed period
- Dotted line: Best Period

Matrix-Product waste on K-Computer

- T^{opt}_{App} : Application-scenario optimal period
- T_{Plat}^{opt} : Platform-scenario optimal period

2D-Stencil waste on ExaScale Fat for an MTBF of 20 years

Protocol overhead	Application scenario	Platform scenario	Instantiating the model	Simulations
Outline				

- 1 Protocol overhead
- 2 Application scenario
- **3** Platform scenario
- **4** Instantiating the model
- **5** Simulations

- Overlap the idle time created by recovery periods
- Analytical model
 - 1 Application scenario:
 - No overlap
 - G+1 groups
 - 2 Platform scenario:
 - Overlap with another application
 - G groups + 1 spare group
- Improve platform efficiency
 - A spare group
 - Application optimal period
- Future work:
 - Energy efficiency