
IBM Research - Ireland

© 2012 IBM Corporation
1

1

AI-Ckpt: Leveraging Memory Access
Patterns for Adaptive Asynchronous

Incremental Checkpointing

Bogdan Nicolae, Franck Cappello

IBM Research
Ireland

Argonne National Lab
USA

IBM Research - Ireland

© 2012 IBM Corporation
2

2

Outline

• Overview on Checkpoint-Restart

• A case for asynchronous approaches

• Proposal: an asynchronous scheme that learns from past memory
access patterns and adapts to current patterns in order to flush
memory pages in an optimized order

• Implementation details

• Evaluation

• Conclusions

IBM Research - Ireland

© 2012 IBM Corporation
3

3

Checkpoint-Restart: a quick overview

• Focus area: HPC applications
– Large scale (heading to exascale)

– Tightly coupled (MPI)

– Long execution time (days)

• Failures are frequent and hard to
overcome

• HPC Checkpoint-Restart
– Saves a globally consistent state

periodically (memory of processes)

– Enables fault tolerance

– ...but also
• Migration

• Debugging

IBM Research - Ireland

© 2012 IBM Corporation
4

4

Checkpoint-Restart: how to keep it scalable?

• What are the current limitations?
– Blocking writes

– Too much checkpointing data

– Too much coordination

– I/O bottlenecks due to
concurrency

• Directions
– Asynchronous techniques

– Reduction of checkpointing
data

– Protocols with less coordination

– Leverage local storage (and
make it resilient)

Source: D Zhao et al, Exploring Reliability of Exascale
Systems through Simulations, HPC'13

IBM Research - Ireland

© 2012 IBM Corporation
5

5

How to enable asynchronous checkpointing

• State of art:
– Full copy, then flush in the background

• High copy overhead

• High extra memory utilization

• No synchronization overhead

– Copy-on-write (using page tracking)
• Less copy overhead

• High extra memory utilization

• No synchronization overhead but monitoring overhead

– Zero-copy
• No copy overhead or extra memory utilization

• High synchronization overhead

• What we ideally want: minimize memory utilization without paying
too much for synchronization/copy overhead

IBM Research - Ireland

© 2012 IBM Corporation
6

6

Zoom on zero-copy: why synchronization matters

• Consistency requirement: after
checkpoint request, flush memory page
before first time write

• Consequence: order of flushing matters

• Obvious solution: if a write needs to
wait, change order to flush as soon as
possible

– Can we do better?

• Key idea of this paper: HPC apps are
iterative in nature, thus we expect first
time writes to be predictable

– Assumption: first time writes are almost
periodic (we call the period “epoch”)

– For simplicity, we assume the epoch
corresponds to the checkpoint interval

0

1

2

3

T

3

flush
process

first time
writes

wait
necessary

Worst case scenario

IBM Research - Ireland

© 2012 IBM Corporation
7

7

Let's apply this idea to zero-copy

• Proposal:
– Monitor first time writes during each epoch
– Flush during each epoch according to ordering from previous epoch

• What if we have irregularities (i.e. order inside epoch unknown) ?

0

1

2

3

First epoch

flush
process

first time
writes

0

3

1

2

0

3

1

2

Second epoch

flush
process

first time
writes

0

3

1

2

flush
process

0
0,1,2 regular
3 irregular

IBM Research - Ireland

© 2012 IBM Corporation
8

8

Proposal: besides order, take into account circumstances

• Assign colors to pages according to their behavior
– RED: app had to wait for page to be flushed

– GREEN: page was flushed before first time write

– BLUE: checkpoint already completed before first time write

• Flush “dangerous” pages first (i.e. red > green > blue)

0

1

2

3

First epoch

flush
process

first time
writes

0

3

1

2

3

0

1

2

Second epoch

flush
process

first time
writes

0

3

1

2

IBM Research - Ireland

© 2012 IBM Corporation
9

9

What about larger deviations?

0

1

2

3

First epoch

flush
process

0

3

1

2

3

0

1

2

Second epoch

flush
process

first time
writes

2
3

1

0

first time
writes

• Large deviations are more problematic

• Can we do better?

1

2

3

0 2

3

1

0

Third epoch

flush
process

first time
writes

0,1,2 inverted to 2,1,0
3 irregular

IBM Research - Ireland

© 2012 IBM Corporation
10

10

Proposal: small copy-on-write buffer to avoid waiting

• New colors (COW buffer has 1 slot in example)
– RED: COW buffer full, app had to wait for page to be flushed

– ORANGE: COW buffer not full, wait avoided by performing COW

– GREEN: page was flushed before first time write

– BLUE: checkpoint already completed before first time write

0

1

2

3

First epoch

flush
process

first time
writes

0

3

1

2

3

0

1

2

Second epoch

flush
process

first time
writes

2

3

1

0

2
3

1

3

2

Third epoch

flush
process

first time
writes

2

3

1

0

03
1

IBM Research - Ireland

© 2012 IBM Corporation
11

11

Final algorithm

• Flush pages in the following order
– Any page that was colored red in the current epoch

– Any page that was colored orange in the current epoch

– Any remaining page according to color from previous epoch
• Color the page green in the current epoch

• If two pages have the same color, respect order from prev epoch

• After flushing is done, color all first time writes as blue

• Pages that didn't get any color are not flushed in the next epoch
– This enables incremental support

– If we do not want incremental support (e.g. because most pages
change), we can simply deactivate monitoring after flushing is done
(to reduce overhead) and implicitly color all remaining pages blue

IBM Research - Ireland

© 2012 IBM Corporation
12

12

Architecture and implementation

• Page manager responsible for monitoring and flushing
– SEGFAULTs used to trap first time writes

• Application links with page manager
– Explicit (custom API) or implicit (jemalloc) protection of memory regions

– CHECKPOINT primitive explicitly called or triggered externally

– Epoch assumed to match checkpoint interval (needs improvement)

IBM Research - Ireland

© 2012 IBM Corporation
13

13

Results: Experimental setup

• Platform:
– Shamrock

– Grid'5000

• Configuration:
– Debian Sid, MPICH2 1.4.1

• Applications
– Synthetic benchmark specifically

written to evaluate proposal
– Real life applications:

• CM1: numerical model for studying
atmospheric phenomena

• MILC: MIMD Lattice Computation
(quantum chromodynamics)

IBM Research - Ireland

© 2012 IBM Corporation
14

14

Methodology

• Three approaches are compared:
– Synchronous checkpointing

– Asynchronous checkpointing without leveraging access pattern

– Our approach

• Settings:
– CM1 on G5K: 32 nodes, 1 process/node, flush to PVFS (10 nodes)

– MILC on Shamrock: 28 nodes, 10 processes/node, flush to local
– Page size is OS default (4KB)

– Three checkpoints evenly spaced throughout runtime

• We are interested in:
– Performance results: duration of checkpointing and impact on app

– How the benefits of our approach depend on COW buffer size

IBM Research - Ireland

© 2012 IBM Corporation
15

15

Results: CM1 (incremental changes: 400MB/728MB per process)

• Conclusions
– Overlapping significantly reduces overhead
– Small COW buffer needed to survive deviations

– Adaptation to access pattern further reduces overhead for small COW
buffer sizes

Increase in runtime compared to baseline Overhead reduction compared to sync

Baseline: 700s
Sync: 100s

IBM Research - Ireland

© 2012 IBM Corporation
16

16

Results: MILC (incremental changes: 830MB/866MB per process)

• Conclusions
– Naïve async and sync much closer, clear distance for our approach

– More regular access pattern, thus better reduction even without COW

– Adaptation to access pattern keeps clear advantage for small COW

Increase in runtime compared to baseline Overhead reduction compared to sync

Baseline: 2100s
Sync: 2600s

IBM Research - Ireland

© 2012 IBM Corporation
17

17

Conclusions

• Asynchronous techniques overlap checkpointing with application
execution, lowering downtime and thus performance overhead

• HPC applications exhibit predictable first-time writes that can be
exploited to optimize flushing order of memory pages

• Results show:
– Reduction of checkpointing overhead of up to 60% compared to sync

– Performs up to 2x better than naïve async

– All this for less than 5% extra memory dedicated to copy-on-write

• This technique is ideal for situations where little extra memory is
available or the extra memory is needed for post-processing (e.g.
compression, de-duplication, message logging, etc.)

Contact:tbogdan.nicolae@ie.ibm.com
Web: http://researcher.ibm.com/person/ie-bogdan.nicolae

mailto:bogdan.nicolae@ie.ibm.com

	What you should have for preliminary discussion (Workshop)
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

