IBM Research - Ireland

Al-Ckpt: Leveraging Memory Access
Patterns for Adaptive Asynchronous
Incremental Checkpointing

Bogdan Nicolae, Franck Cappello

IBM Research Argonne National Lab
Ireland USA

Smarter

=
rechnology Centre © 2012 IBM Corpor ration

IBM Research - Ireland

Overview on Checkpoint-Restart
A case for asynchronous approaches

Proposal: an asynchronous scheme that learns from past memory
access patterns and adapts to current patterns in order to flush
memory pages in an optimized order

Implementation details
Evaluation
Conclusions

Smarter 2
i2chnology Centre © 2012 IBM Corporation e

IBM Research - Ireland

Checkpoint-Restart: a quick overview

Focus area: HPC applications
— Large scale (heading to exascale)
— Tightly coupled (MPI)
— Long execution time (days)

Failures are frequent and hard to
overcome

HPC Checkpoint-Restart

— Saves a globally consistent state
periodically (memory of processes)

— Enables fault tolerance

— ...but also
* Migration
* Debugging

Smarter 3
T2chnology Centre © 2012 IBM Corporation =

[[en]]
Il
IIII

[}

IBM Research - Ireland

5
1In
i

Checkpoint-Restart: how to keep it scalable?

What are the current limitations?
_ _ 1000 ——WTTF
— Blocking writes —e— Check
— Too much checkpointing data +00
— Too much coordination
— 1/0O bottlenecks due to

Time (hours)
=
o

1
concurrency —
. . 0.1 ' ' | |
Directions X A o> K Ao
. Y 9 N Vv “
— Asynchronous technigques &' e XA o PR
. - . My
— dRe‘l_ductlon of checkpointing System Scale (# of nodes)
ata

_ _ _ Source: D Zhao et al, Exploring Reliability of Exascale
— Protocols with less coordination Systems through Simulations, HPC'13

— Leverage local storage (and
make it resilient)

Smarter A
Tachnology Centre © 2012 IBM Corporation g

IBM Research - Ireland

State of art:

— Full copy, then flush in the background
* High copy overhead
* High extra memory utilization
* No synchronization overhead
— Copy-on-write (using page tracking)
* Less copy overhead
* High extra memory utilization
* No synchronization overhead but monitoring overhead

— Zero-copy
* No copy overhead or extra memory utilization
* High synchronization overhead

What we ideally want: minimize memory utilization without paying
too much for synchronization/copy overhead

Smarter 5
rechnology Centre © 2012 IBM Corporation -

IBM Research - Ireland

Consistency requirement: after
checkpoint request, flush memory page
before first time write

Consequence: order of flushing matters T
Obvious solution: if a write needs to

Worst case scenario

wait, change order to flush as soon as —y
possible il A

— Can we do better? o necessary
Key idea of this paper: HPC apps are
iterative in nature, thus we expect first v
time writes to be predictable flush first time

— Assumption: first time writes are almost process writes

periodic (we call the period “epoch”)

— For simplicity, we assume the epoch
corresponds to the checkpoint interval

Smarter 6
7echnology Centre © 2012 IBM Corporation -

IBM Research - Ireland

Proposal:

— Monitor first time writes during each epoch

— Flush during each epoch according to ordering from previous epoch
What if we have irregularities (i.e. order inside epoch unknown) ?

First epoch

0
3

w N O

1
2

flush first time
process y writes

Smarter
T2chnology Centre

0,1,2 regular
3 irregular

© 2012 IBM Corporation

Second epoch

0 3
3 &
0
1
1
2
2
first time

process y writes

IBM Research - Ireland

Proposal: besides order, take into account circumstances

Assign colors to pages according to their behavior
— RED: app had to wait for page to be flushed
— GREEN: page was flushed before first time write
— BLUE: checkpoint already completed before first time write

Flush “dangerous” pages first (i.e. red > green > blue)

First epoch Second epoch
- &7
1 0 0 3
2 | 0
— -
1 2E
o 2H
flush first time flush first time
process y writes process y writes

Smarter 3
«2chnology Centre © 2012 IBM Corporation =

IBM Research - Ireland

What about larger deviations?

Large deviations are more problematic

Can we do better? 0,1,2 inverted to 2,1,0

3 irregular

First epoch Second epoch Third epoch
0 3
1 0
> 0 3 B mm
» . 3
3 2m« >
[0
> - i
0 0
Y . . /)) \j . .
flush first time flush first time flush first time
process writes process writes process writes

Smarter 9
i2chnology Centre © 2012 IBM Corporation b3

| ||
n
ul
i

IFTH)

IBM Research - Ireland

Proposal: small copy-on-write buffer to avoid waiting

New colors (COW buffer has 1 slot in example)
— RED: COW buffer full, app had to wait for page to be flushed
— : COW buffer not full, wait avoided by performing COW
— GREEN: page was flushed before first time write
— BLUE: checkpoint already completed before first time write

First epoch Second epoch Third epoch
0 3 1
1 0 0 3 2 3
2 2 3 3+ 2
3 2l 2 -
» B 0 1
. IRl —
o 0
flush first time flush first time flush first time

Proceéss y writes process Y writes process V' writes

Smarter 10
7echnology Centre © 2012 IBM Corporation =

IBM Research - Ireland

Flush pages in the following order
— Any page that was colored red in the current epoch
— Any page that was colored orange in the current epoch
— Any remaining page according to color from previous epoch
* Color the page green in the current epoch
If two pages have the same color, respect order from prev epoch
After flushing is done, color all first time writes as blue

Pages that didn't get any color are not flushed in the next epoch
— This enables incremental support

— If we do not want incremental support (e.g. because most pages
change), we can simply deactivate monitoring after flushing is done
(to reduce overhead) and implicitly color all remaining pages blue

Smarter 11
7echnology Centre © 2012 IBM Corporation e

IBM Research - Ireland

Compute node Compute node

Application processes Application processes

, < Unmodified computation > < Modified computation
)
)

malloc malloc_protected
free

malloc_protected

free_protected

. ' free_protected

1 chkpt i ckpt

! _> 1 '

\ signal CHECKPOINT ' \ signal CHECKPOINT
1 1 1

Local commit Remote commit

Remote repository (parallel FS, key-value store, etc.)

Page manager responsible for monitoring and flushing
— SEGFAULTSs used to trap first time writes
Application links with page manager
— Explicit (custom API) or implicit (jemalloc) protection of memory regions
— CHECKPOINT primitive explicitly called or triggered externally
— Epoch assumed to match checkpoint interval (needs improvement)

Smarter 12
7echnology Centre © 2012 IBM Corporation =

IBM Research - Ireland

Results: Experimental setup

Platform:

— Shamrock
— Grid'5000
Configuration:
— Debian Sid, MPICH2 1.4.1

Applications o
— Synthetic benchmark specifically .
written to evaluate proposal -
— Real life applications:

* CM1: numerical model for studying
atmospheric phenomena

* MILC: MIMD Lattice Computation
(quantum chromodynamics)

Smarter

o~
iechnology Centre © 2012 IBM Corporation

IBM Research - Ireland

Three approaches are compared:
— Synchronous checkpointing
— Asynchronous checkpointing without leveraging access pattern
— Our approach

Settings:
— CM1 on G5K: 32 nodes, 1 process/node, flush to PVFS (10 nodes)
— MILC on Shamrock: 28 nodes, 10 processes/node, flush to local
— Page size is OS default (4KB)
— Three checkpoints evenly spaced throughout runtime

We are interested in:
— Performance results: duration of checkpointing and impact on app
— How the benefits of our approach depend on COW buffer size

Smarter 14
7ezhnology Centre © 2012 IBM Corporation =

IBM Research -

Ireland

Increase |n runtime compared to basellne

Increase in app execution time (s)

120 —
ourapproach —— X
110 | async-no-pattern o
Sync —%— s
e
100 o)
>
o
90 | 2
<
80 §_
O
70 | 2
(@]
" £
60 -/I + c
9
50 S
3
40 1 1 1 D:
10 15 30 35
Number of processes
Conclusions

— Overlapping significantly reduces overhead

80 r

60 |

40

20 r

10Overhead reduction compared to sync

our- approach —
async-no-pattern

oMB 1MB 4MB 16MB 64MB 256MB
Copy-on-write buffer size

Baseline: 700s
Sync: 100s

— Small COW buffer needed to survive deviations

— Adaptation to access pattern further reduces overhead for small COW
buffer sizes

Smarter

7echnology Centre

© 2012 IBM Corporation

15 . "

IBM Research - Ireland

Increase in runtlme compared to baselrne Overhead reduction compared to sync
600 ' < 100 ~our-approach
& > async-no-pattern
L i ©
o 500 g g
= g
S 400 f °
3 S 60
O <
& 300t / | 5
o X~
& 8 40
£ 200 | ' ' { ©
S 20
% 100 ourapproach —— |1 G
= async-no-pattern S
0 . | , __sync —%— e 0
0 50 100 150 200 250 300 OMB 1MB 4MB 16MB 64MB 256MB
Number of processes Copy-on-write buffer size
Baseline: 2100s
Conclusions Sync: 2600s

— Naive async and sync much closer, clear distance for our approach
— More regular access pattern, thus better reduction even without COW
— Adaptation to access pattern keeps clear advantage for small COW

Smarter 16
7Technology Centre © 2012 IBM Corporation =

IBM Research - Ireland

Asynchronous techniques overlap checkpointing with application
execution, lowering downtime and thus performance overhead

HPC applications exhibit predictable first-time writes that can be
exploited to optimize flushing order of memory pages

Results show:

— Reduction of checkpointing overhead of up to 60% compared to sync
— Performs up to 2x better than naive async
— All this for less than 5% extra memory dedicated to copy-on-write

This technique is ideal for situations where little extra memory is
available or the extra memory is needed for post-processing (e.g.
compression, de-duplication, message logging, etc.)

Contact: bogdan.nicolae@ie.ibm.com
Web: http.//researcher.ibm.com/person/ie-bogdan.nicolae

Smarter 17
7echnology Centre © 2012 IBM Corporation e

mailto:bogdan.nicolae@ie.ibm.com

	What you should have for preliminary discussion (Workshop)
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

