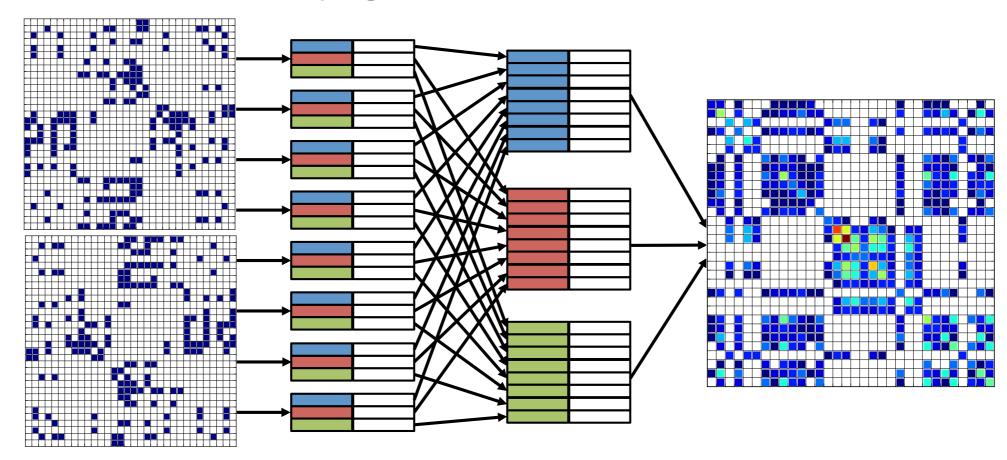
Opportunities in developing a more robust and scalable multigrid solver

Joint Lab Workshop

Luke Olson

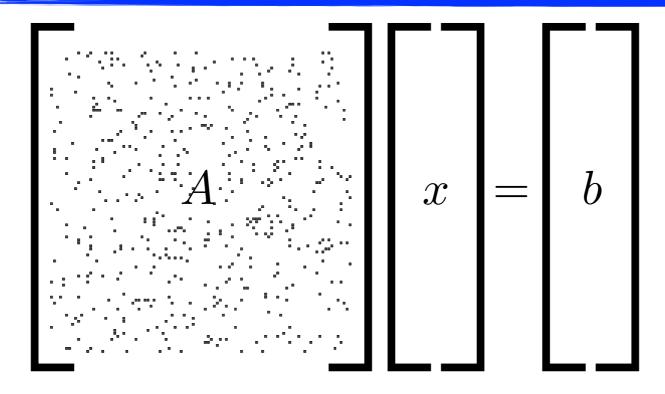
Department of Computer Science University of Illinois at Urbana-Champaign



June 2013

problem

wanted: to solve large-scale, non-elliptic problems



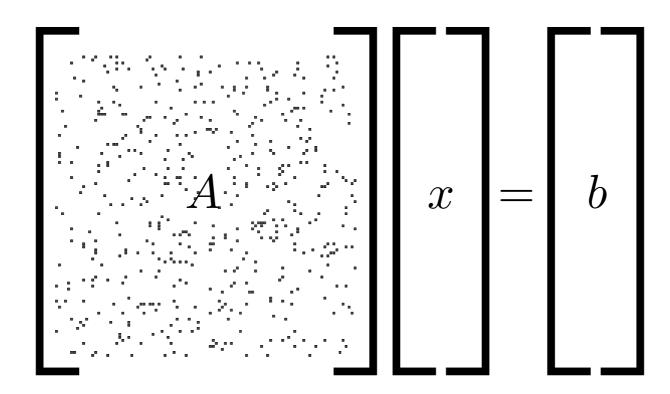
- challenges:
 - complex, non-symmetric, unstructured problems
 - computing environments less homogeneous
 e.g. high throughput

solvers challenge (classic approach)

$$x = b$$

- Focus solvers development on
 - robustness --- i.e., improve convergence
 - scalability --- i.e., improve weak scaling

solvers challenge (now)



- Focus solvers development on
 - mapping optimal strategies to software/arch
 - utilizing architectural advantages
 - software flexibility***

The point of this talk

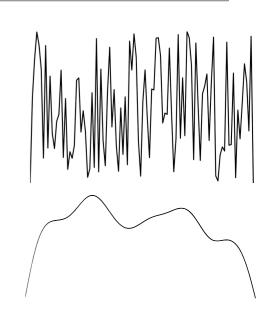
Highlight two advances in multigrid

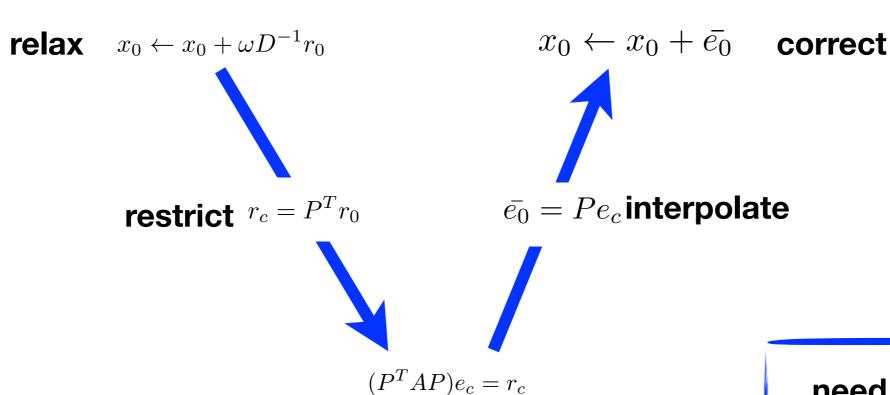
- 1. optimal strategies for multigrid robustness
- 2. performance strategies for multigrid for high-throughput

Identify two challenge areas for collaboration

- 1. bringing optimizations to scale
- 2. integrating high-throughput advances

- 1. attenuate high energy quickly with with relaxation
- 2. attenuate low energy error through coarse-grid correction



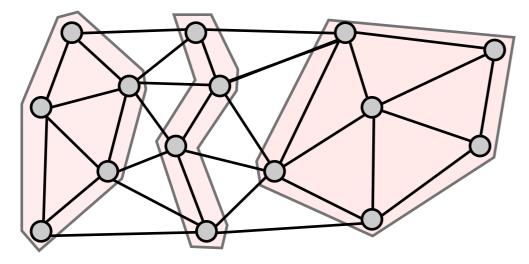


coarse solve

need P

Which multigrid method?

- · none. Think of a framework.
- example: aggregation groups of <u>fine</u> nodes form <u>coarse</u> nodes



fine: 15

coarse: 3

 \cdot this gives a pattern for P

$$e_1 \leftarrow (I - P(P^TAP)^{-1}P^TA)Ge_0$$

$$\leftarrow residual$$
restrict
$$\leftarrow coarse solve$$

$$\leftarrow correct$$

Typical Components

find low energy: physics, adaptive methods, intuition

strength measure between d.o.f.:

edge weights, relaxation

coarse point — fine point mapping:

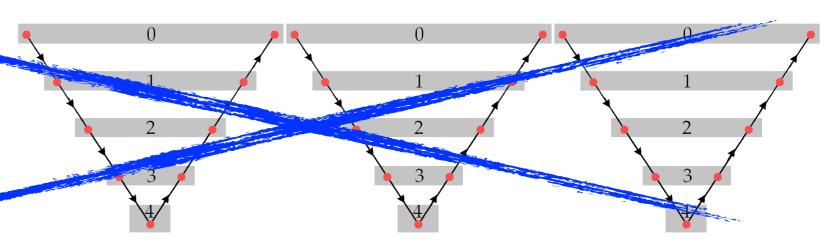
geometric, aggregation, independent set

low complexity, accurate interpolation:

weighted averages, relaxation, energy-minimization

P energy-minimization

richer coarse grids



$$e_1 \leftarrow (I - P(P^TAP)^{-1}P^TA)Ge_0$$

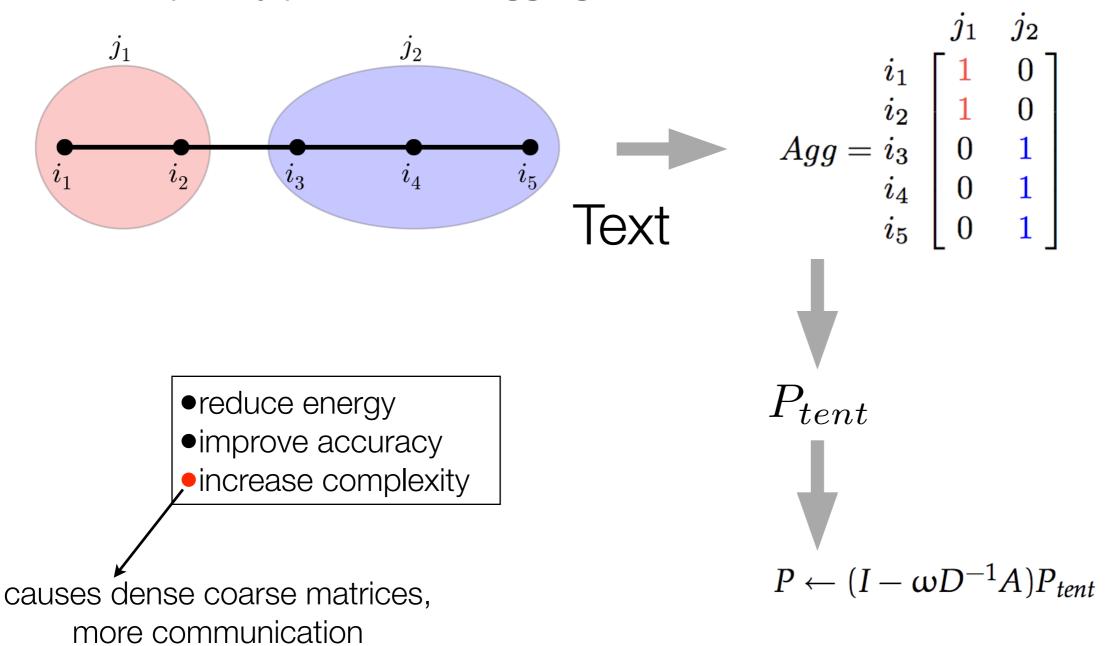
$$\text{coarse grid correction} \text{relax} \in \mathcal{R}_{\text{Coarse}}$$

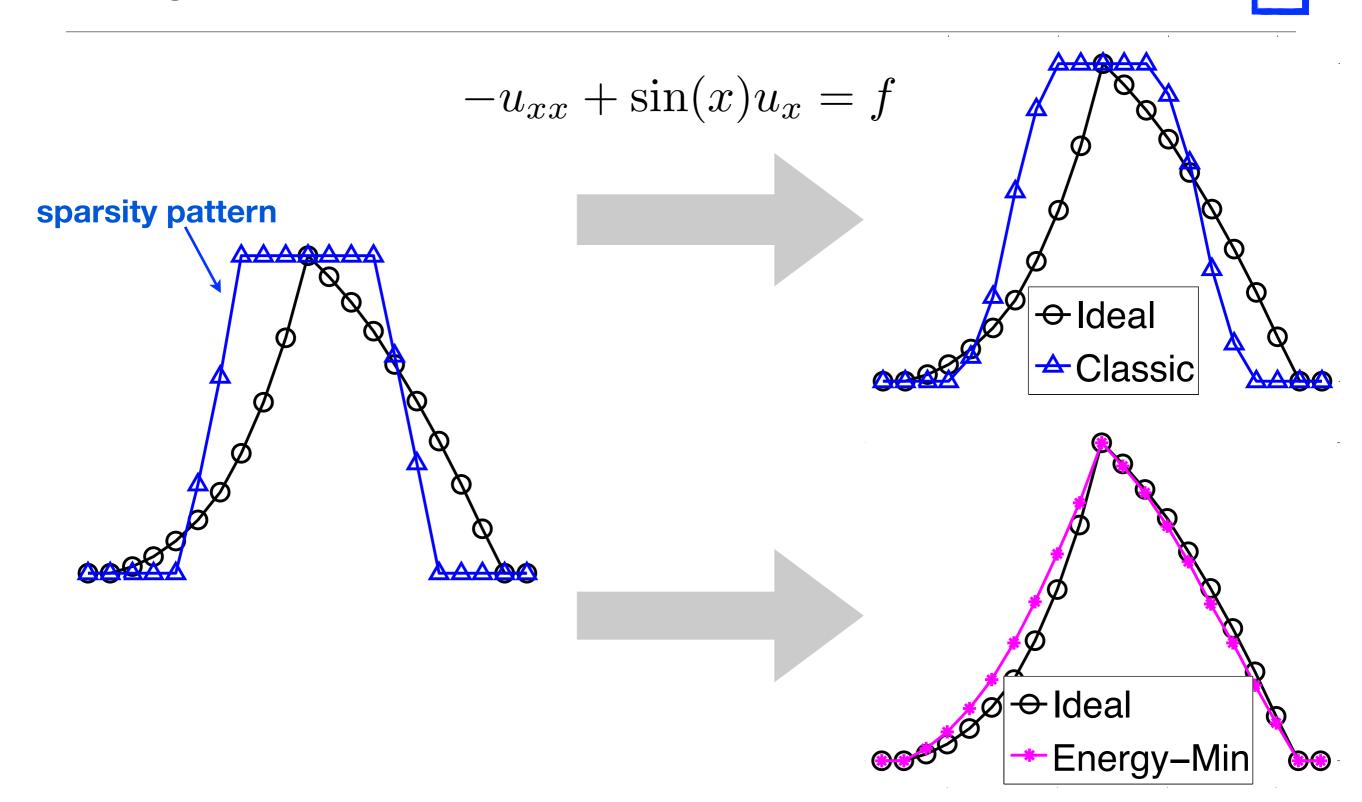
- P should have low energy (low A-norm or A^*A -norm)
 - 1. determine sparsity pattern
 - 2. minimize energy column-wise (parallel)

*** Olson, Schroder, Tuminaro, A general interpolation strategy for algebraic multigrid using energy-minimization, SISC, 2010.

Interpolation: standard approach

Set the sparsity pattern from aggregation





- Want P so that $u_{low} \in \mathcal{R}(P)$
- 1. Grow and fix sparsity pattern as $S^k P_{tent}$ strong graph
- 2. Minimize residual of

$$AP_j = 0$$
 for each column j

3. Constraint the minimization with

$$Pu_{low}^c = u_{low}$$

Toward General Interpolation

· Hermitian (and positive definite): use CG

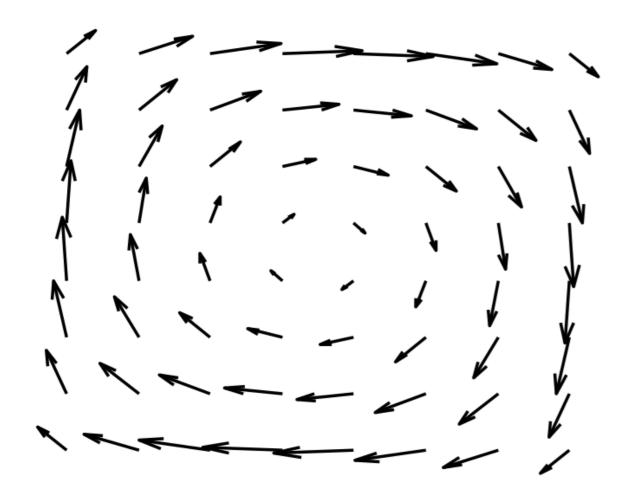
$$AP_j = 0 \Leftrightarrow \min ||P_j||_A$$
$$R = P^*$$

Non-Hermitian: use GMRES

$$AP_j = 0 \Leftrightarrow \min ||P_j||_{A^*A}$$
$$A^*R_j^* = 0 \Leftrightarrow \min ||R_j^*||_{AA^*}$$

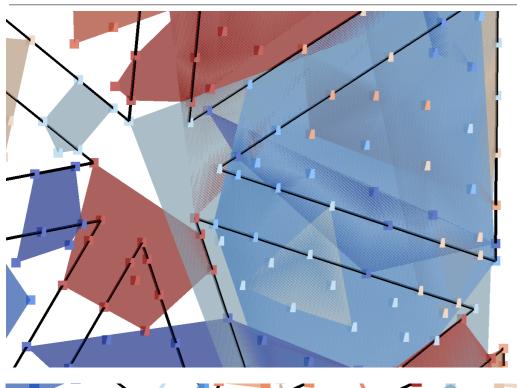
- Range of interpolation targets "right" low-energy
- Range of restriction* targets "left" low-energy
- Cost is comparable to that of standard smoothing

Example: recirculating flow



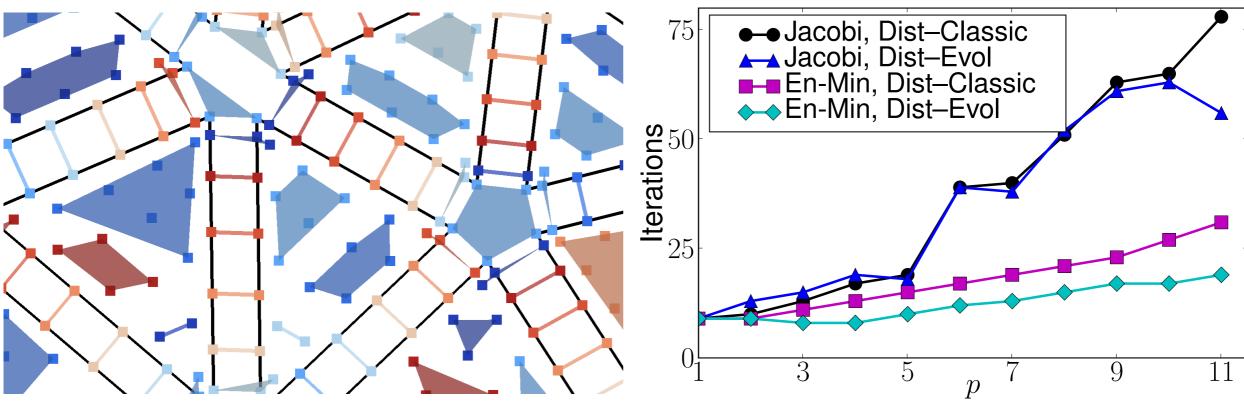
h	std.	opt.
1/64	>150	24
1/128	>150	28
1/256	>150	33
1/512	>150	33

⊢iterations **⊣**



key ingredients:

- conforming aggregations step
- adapt the near null space
- optimal interpolation



Collaboration #1

Opportunities

- I. Optimal interpolation at scale
 - a. many decisions:
 - optimize on communication distance, size, impact
 - local vs non-local optimizations
 - b. geometric-style optimization
 - c. on-the-fly updates to the hierarchy (time, nonlinear, etc)
 - d. DD

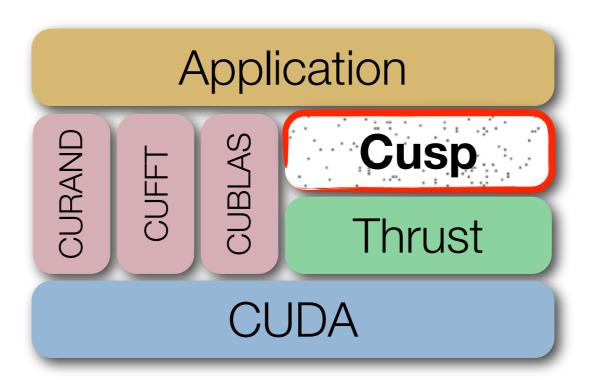
- II. Other optimizations:
 - a. adaptive setup
 - b. dynamic aggregation

potential: SpMVs*** are fast, scans+reductions are fast

useable software: CUDA + Thrust + Cusp

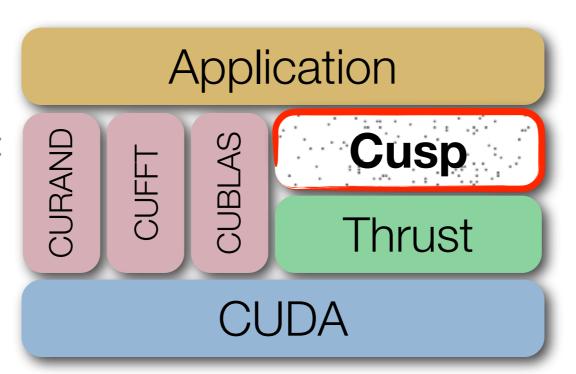
AMG "asks" for acceleration:

- √ adaptive
- √ thick near null-space
- √ higher intensity work in optimizations



- expose fine-grained parallelism
- •utilize fast kernels (gather, scatter, scans, sort, etc)

- fast development
- low overhead
- open source



- expose fine-grained parallelism
- •utilize fast kernels (gather, scatter, scans, sort, etc)

- SMMP algorithm: very sequential
 - requires O(ncol) storage to determine entries of each sparse row
 - parallelism would require O(ncol) memory per thread
- Consider C = A * B

Consider
$$C = A * B$$

$$A = \begin{bmatrix} 5 & 10 & 0 \\ 15 & 0 & 20 \end{bmatrix}, = \begin{bmatrix} (0,0,5) \\ (0,1,10) \\ (1,0,15) \\ (1,2,20) \end{bmatrix}, \quad B = \begin{bmatrix} 25 & 0 & 30 \\ 0 & 35 & 40 \\ 45 & 0 & 50 \end{bmatrix}, = \begin{bmatrix} (0,0,25) \\ (0,2,30) \\ (1,1,35) \\ (1,2,40) \\ (2,0,45) \\ (2,2,50) \end{bmatrix},$$

- 1. form intermediate view of C
- 2. sort C by row, col
- 3. contract C by summing duplicates

SpMM

$$A = \begin{bmatrix} 5 & 10 & 0 \\ 15 & 0 & 20 \end{bmatrix}, B = \begin{bmatrix} 25 & 0 & 30 \\ 0 & 35 & 40 \\ 45 & 0 & 50 \end{bmatrix},$$

Expand Primitives: reduce, scatter, scan expand with
$$A(i,j)*B(i,:)$$

$$C = \begin{bmatrix} (0,0,\ 125) \\ (0,2,\ 150) \\ (0,1,\ 350) \\ (0,2,\ 400) \\ (1,0,\ 375) \\ (1,2,\ 450) \\ (1,0,\ 900) \\ (1,2,1000) \end{bmatrix}$$

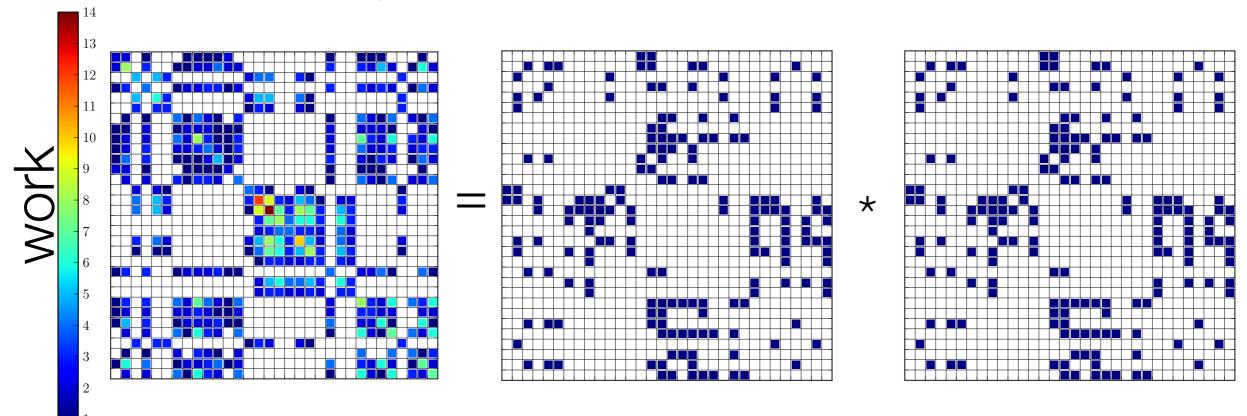
 Sort Primitives: sort by column keys

$$C = \begin{bmatrix} (0,1, & 350) \\ (0,2, & 150) \\ (0,2, & 400) \\ (1,0, & 375) \\ (1,0, & 900) \\ (1,2, & 450) \\ (1,2, & 1000) \end{bmatrix}$$

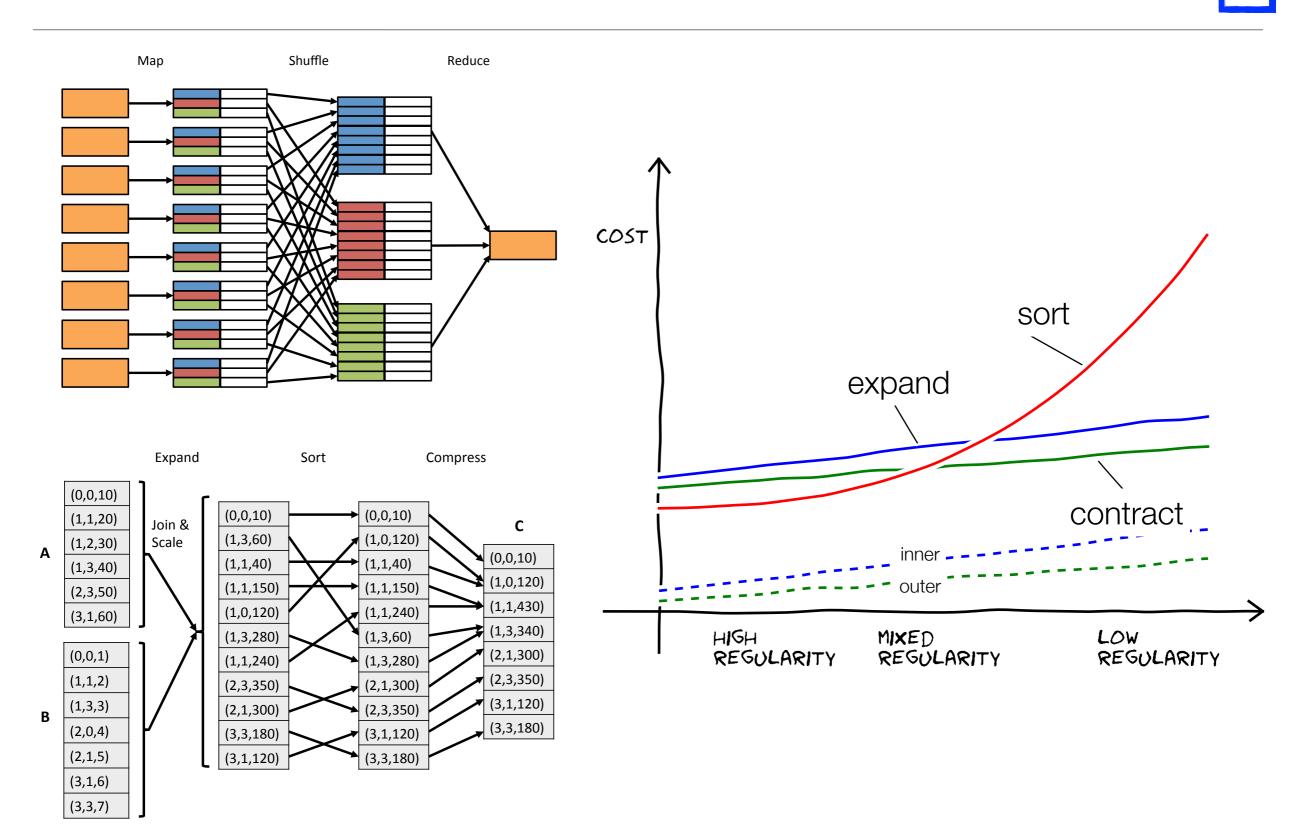
Contract Primitives:
$$C = \begin{bmatrix} (0,0,\ 125) \\ (0,1,\ 350) \\ (0,2,\ 550) \\ (1,0,1275) \\ (1,2,1450) \end{bmatrix} = \begin{bmatrix} 125 & 350 & 550 \\ 1275 & 0 & 1450 \end{bmatrix}.$$

- insensitive to irregularity of input
- same "work" as SMMP
- storage cost can be large for intermediate (reduce by subdividing)

- \cdot Structure of $\,C\,$ expensive to (accurately) ascertain
- \cdot Structure of C not representative of work



SpMM Modeling



Opportunities

I. SpMM and other non-linear algebra optimized linear algebra optimizations

- a. paraphrase Gropp: not everything should be reduced to linear algebra
- b. How to use in a multinode-multiGPU environment?

II. Can we use hardware optimized scans/reduces at scale?

- a. other programming models support this
- b. P. Fischer makes at good case at CSE13***

III. How to incorporate low-level (useable) abstractions

- a. CUSP flexible back-end
- b. Better way to use, manage back-ends in a library code
- c. DD?

Summary of potential collaboration:

- 1. Redevelop optimized multigrid components in a large-scale environment
- 2. Integrate architecture motivated multigrid decisions into a heterogeneous environment

A comment on future collaboration:

3. Outline a path or roadmap or position on resilience in solvers

Looking ahead to more collaboration

- Students can be a great conduit for moving forward
 - · one plan:
 - student from Illinois 1/2 at ANL 1/2 in France for the summer
 + a shorter visit to France during Winter Break
 - adjoint plan:
 - student from France 1/2 at ANL 1/2 at Illinois for the summer
 + a short visit to Illinois (!) during Winter Break
- Co-developing a code
 - Take something like GAMG as a base and fork it
 - Trying this currently with ANL
 - Retains buy-in to a code "structure", but not a framework
 - Allows ownership for a researcher or student or whomever
- · Need a specific plan to carry out over the next 6 mo

Nvidia for hardware

• software development: CUSP::MG

• software development: PyAMG

• LLNL, SNL for student support

GPU

