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problem

wanted: to solve large-scale, non-elliptic problems

» challenges:
« complex, non-symmetric, unstructured problems

- computing environments less homogeneous
--- €.g. high throughput



solvers challenge (classic approach)

» Focus solvers development on
* robustness --- i.e., Improve convergence

- scalability --- i.e., improve weak scaling



solvers challenge (now)

» Focus solvers development on
- mapping optimal strategies to software/arch
- utilizing architectural advantages

- software flexibility***

***see Jed Brown’s talk



The point of this talk

'Highlight two advances in muItigridI

1. optimal strategies for multigrid robustness

2. performance strategies for multigrid for high-throughput

| |dentify two challenge areas for collaborationl

1. bringing optimizations to scale

2. Integrating high-throughput advances



Multilevel view

. attenuate high energy quickly
with with relaxation

2. attenuate low energy error
through coarse-grid correction
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Which multigrid method?

 nhone. Think of a framework.

» example: aggregation groups of fine nodes form coarse nodes

/\ 7 fine: 15

coarse: 3

T
+ this gives a pattern for PP
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<€ relax
<€—{ residual
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<€ correct



Typical Components EI

find low energy: physics, adaptive methods, intuition

strength measure between d.o.f.:
edge weights, relaxation

coarse point — fine point mapping:
geometric, aggregation, independent set

low complexity, accurate interpolation: | P
weighted averages, relaxation,|energy-minimization

better cycli i

* richer coarse grids




optimizing energy LT_I

e1 — (I — P(P*AP) ' P* A)Geg
}—————x=coarse grid correction=—{ Frelax=

G

P should have low energy  (low A-normor A* A-norm)
1. determine sparsity pattern
2. minimize energy column-wise (parallel)

** QOlson, Schroder, Tuminaro, A general interpolation
Strategy for algebraic multigrid using energy-
minimization, SISC, 2010.



Interpolation: standard approach

- Set the sparsity pattern from aggregation

J1 J2

ercduce energy
®mprove accuracy
®|ncrease complexity

causes dense coarse matrices,
more communication

Text
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Range of Interpolation EJ
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Toward General Interpolation

-« Want P sothat Ujgy € R(P)

1. Grow and fix sparsity pattern as S thent

strong graph

2. Minimize residual of

AP; =0 for each column j

3. Constraint the minimization with

C
Pulow — Ujow



Toward General Interpolation

- Hermitian (and positive definite): use CG

APj =0 HllIlHPJHA

R = P~
 Non-Hermitian: use GMRES
APj — () < min

A*R;’f = (0 < min

P
R

J

* Range of interpolation targets “right” low-energy

* Range of restriction™ targets “left” low-energy

- Cost is comparable to that of standard smoothing

A*A

‘AA*



—xample: recirculating flow E'
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High-order discontinuous Galerkin: diffusion  [1]

key ingredients:

- conforming aggregations step
» adapt the near null space

» optimal interpolation
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Collaboration #1

Opportunities

|. Optimal interpolation at scale
a. many decisions:
e optimize on communication distance, size, impact
 |local vs non-local optimizations
b. geometric-style optimization
c. on-the-fly updates to the hierarchy (time, nonlinear, etc)
d. DD

Il. Other optimizations:
a. adaptive setup
b. dynamic aggregation



Why Acceleration for Multigrid 2]

potential: SpMVs™™ are fast,
scans+reductions are fast

useable software:

CUDA + Thrust + Cusp

AMG “asks” for acceleration:
v adaptive

v thick
v highe

near

rInte

null-space

ﬁ

sity work in optimizations

*** see Bill Gropp’s talk



CUSP

*expose fine-g
utilize tfast ker

'CURAND
' CUFFT
CUBLAS

[~

Application

Thrust '

CUDA

ral

ASS

ned parallelism

(gather, scatter, scans, sort, etc)

“** Bell, Dalton, Olson, Exposing fine-grained
parallelism in algebraic multigrid, 2011.



CUSP

- fast development
 low overhead
* Open source

'CURAND
' CUFFT
CUBLAS

=

Application

| Thrust |

CUDA )

*eXpose fine-gral
utilize tfast kerne

ned parallelism

S (gather, scatter, scans, sort, etc)

“** Bell, Dalton, Olson, Exposing fine-grained
parallelism in algebraic multigrid, 2011.



SpPMM

- SMMP algorithm: very sequential

- requires O(ncol) storage to determine entries of each sparse row

- parallelism would require O(ncol) memory per thread

- Consider C = Ax B
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SpPMM

-

- Expand Primitives:

reduce,

- Sort Primitives:

scatter,
expand with A(i, j) = B(i,:)

sort by column keys
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SpPMM

- Contract Primitives: Eg’(l)’ :ﬁg%
C=100.2, 550)) = |1975 1450]'

(1,0,1275)

(1,2,1450)

iInsensitive to irregularity of input

same “work” as SMMP

storage cost can be large for intermediate (reduce by subdividing)



~)

SpMM Modeling C=AxB

. Structure of C expensive to (accurately) ascertain

- Structure of (' not representative of work
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SpMM Modeling

Map

(0,0,10)

(1,1,20)

(1,2,30)

(1,3,40)

(2,3,50)

(3,1,60)

(0,0,1)

(1,1,2)

(1,3,3)

(2,0,4)

(2,1,5)

(3,1,6)

(3,3,7)

Expand

Join &
Scale

Shuffle

Reduce

A\ 4

Sort

Compress
(0,0,10) » (0,0,10) c
(1,3,60) (1,0,120) \\\\\\\‘
(1,1,40) \y/: (1,1,40) k (0,0,10)
(1,1,150) » (1,1,150) (1,0,120)
(1,0,120) / (1,1,240) >’ (1,1,430)
(1,3,280) (1,3,60) 7’ (1,3,340)
(1,1,240) (1,3,280) ////,/'(Zanoo)
(2,3,350) (2,1,300) /' (2,3,350)
(2,1,300) >< (2.3.350) /v (3,1,120)
(3,3,180) (3,1,120) (3,3,180)
(3,1,120) >< (3,3,180) /

COST

HIGH
REGULARITY

MIXED
REGULARITY

LOW
REGULARITY



Collaboration #2 E'

Opportunities

l. SpMM and other non-linear algebra optimized linear algebra optimizations
a. paraphrase Gropp: not everything should be reduced to linear algebra
b. How to use in a multinode-multiGPU environment?

Il. Can we use hardware optimized scans/reduces at scale?
a. other programming models support this
b. P. Fischer makes at good case at CSE13***

lll.How to incorporate low-level (useable) abstractions
a. CUSP flexible back-end
b. Better way to use, manage back-ends in a library code
c. DD?

“*P, Fischer, PDE-Based Simulation Beyond
Petascale, CSE13



Summary of potential collaboration:

1. Redevelop optimized multigrid components
In a large-scale environment

2. Integrate architecture motivated multigrid
decisions into a heterogeneous environment

A comment on future collaboration:

3. Outline a path or roadmap or position on
resilience in solvers



Looking ahead to more collaboration

- Students can be a great conduit for moving forward
* one plan:
- student from lllinois 1/2 at ANL 1/2 in France for the summer
+ a shorter visit to France during Winter Break
- adjoint plan:
- student from France 1/2 at ANL 1/2 at lllinois for the summer
+ a short visit to lllinois (!) during Winter Break

- Co-developing a code
- Take something like GAMG as a base and fork it
* Trying this currently with ANL
 Retains buy-in to a code “structure”, but not a framework
 Allows ownership for a researcher or student or whomever

« Need a specific plan to carry out over the next 6 mo



Nvidia for hardware

software development: CUSP::MG

software development: PYAMG

LLNL, SNL for student support

<

NVIDIA.

d
__
-l

Sandia
National
Laboratories



http://code.google.com/p/cusp-library/
http://code.google.com/p/cusp-library/
http://www.pyamg.org
http://www.pyamg.org
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