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problem

• challenges:
• complex, non-symmetric, unstructured problems
• computing environments less homogeneous 

--- e.g. high throughput
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wanted:  to solve large-scale, non-elliptic problems



solvers challenge (classic approach)

• Focus solvers development on
• robustness --- i.e., improve convergence

• scalability --- i.e., improve weak scaling
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solvers challenge (now)

• Focus solvers development on
• mapping optimal strategies to software/arch
• utilizing architectural advantages
• software flexibility***
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***see Jed Brown’s talk



The point of this talk

1. optimal strategies for multigrid robustness

2. performance strategies for multigrid for high-throughput

1. bringing optimizations to scale

2. integrating high-throughput advances

Highlight two advances in multigrid

Identify two challenge areas for collaboration



Multilevel view

1. attenuate high energy quickly 
with with relaxation

2. attenuate low energy error 
through coarse-grid correction
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• none.  Think of a framework.

• example: aggregation groups of fine nodes form coarse nodes

• this gives a pattern for

Which multigrid method?
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• find low energy:    physics, adaptive methods, intuition

• strength measure between d.o.f.: 
                               edge weights, relaxation 

• coarse point — fine point mapping: 
                               geometric, aggregation, independent set

• low complexity, accurate interpolation:
                               weighted averages, relaxation, energy-minimization

• better cycling

• richer coarse grids
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optimizing energy

•        should have low energy     (low     -norm or           -norm)
1.  determine sparsity pattern
2.  minimize energy column-wise (parallel)

P A A⇤A

*** Olson, Schroder, Tuminaro,  A general interpolation 
strategy for algebraic multigrid using energy-
minimization, SISC, 2010.
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Interpolation: standard approach

• Set the sparsity pattern from aggregation

•reduce energy
•improve accuracy
•increase complexity
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Range of Interpolation
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Toward General Interpolation

• Want      so that

1. Grow and fix sparsity pattern as 

2. Minimize residual of 

3. Constraint the minimization with
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Toward General Interpolation

• Hermitian (and positive definite): use CG

• Non-Hermitian: use GMRES

• Range of interpolation targets “right” low-energy

• Range of restriction* targets “left” low-energy

• Cost is comparable to that of standard smoothing
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Example: recirculating flow

std. opt.
1/64 >150 24

1/128 >150 28
1/256 >150 33
1/512 >150 33
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High-order discontinuous Galerkin: diffusion
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Jacobi, Dist–Evol
En-Min, Dist–Classic
En-Min, Dist–Evol

key ingredients:
• conforming aggregations step
• adapt the near null space
• optimal interpolation
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Collaboration #1

Opportunities

I. Optimal interpolation at scale
a. many decisions:

• optimize on communication distance, size, impact
• local vs non-local optimizations

b. geometric-style optimization
c. on-the-fly updates to the hierarchy (time, nonlinear, etc)
d. DD

II. Other optimizations:
a. adaptive setup
b. dynamic aggregation
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Why Acceleration for Multigrid

potential: SpMVs*** are fast, 
                 scans+reductions are fast

useable software: CUDA + Thrust + Cusp

AMG “asks” for acceleration:
✓adaptive
✓thick near null-space
✓higher intensity work in optimizations

*** see Bill Gropp’s talk
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Application
CU
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•expose fine-grained parallelism
•utilize fast kernels (gather, scatter, scans, sort, etc)

*** Bell, Dalton, Olson,  Exposing fine-grained 
parallelism in algebraic multigrid, 2011.

2CUSP



• fast development
• low overhead
• open source
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SpMM

• SMMP algorithm: very sequential
- requires O(ncol) storage to determine entries of each sparse row
- parallelism would require O(ncol) memory per thread

• Consider
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SpMM

• Expand Primitives: 
reduce, scatter, scan 
expand with 

• Sort Primitives:
sort by column keys
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SpMM

• Contract Primitives: 
reduce

• insensitive to irregularity of input

• same “work” as SMMP

• storage cost can be large for intermediate (reduce by subdividing)
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SpMM Modeling

• Structure of       expensive to (accurately) ascertain

• Structure of       not representative of work
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SpMM Modeling
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Collaboration #2

Opportunities

I. SpMM and other non-linear algebra optimized linear algebra optimizations 
a. paraphrase Gropp: not everything should be reduced to linear algebra
b. How to use in a multinode-multiGPU environment?

II. Can we use hardware optimized scans/reduces at scale?
a. other programming models support this
b. P. Fischer makes at good case at CSE13***

III.How to incorporate low-level (useable) abstractions
a. CUSP flexible back-end
b. Better way to use, manage back-ends in a library code
c. DD?

2

***P. Fischer, PDE-Based Simulation Beyond 
Petascale, CSE13



Summary of potential collaboration:

1. Redevelop optimized multigrid components 
in a large-scale environment

2. Integrate architecture motivated multigrid 
decisions into a heterogeneous environment

A comment on future collaboration:

3. Outline a path or roadmap or position on 
resilience in solvers



Looking ahead to more collaboration

• Students can be a great conduit for moving forward
• one plan: 

• student from Illinois 1/2 at ANL 1/2 in France for the summer
                                 + a shorter visit to France during Winter Break

• adjoint plan: 
• student from France 1/2 at ANL 1/2 at Illinois for the summer

                                 + a short visit to Illinois (!) during Winter Break

• Co-developing a code
• Take something like GAMG as a base and fork it
• Trying this currently with ANL
• Retains buy-in to a code “structure”, but not a framework
• Allows ownership for a researcher or student or whomever

• Need a specific plan to carry out over the next 6 mo



• Nvidia for hardware

• software development: CUSP::MG

• software development: PyAMG

• LLNL, SNL for student support

http://code.google.com/p/cusp-library/
http://code.google.com/p/cusp-library/
http://www.pyamg.org
http://www.pyamg.org


0

0.3

0.5

0.8

1.0

Level 1 Level 2 Level 3 Level 4

GPU

strength
aggregation
tentative
prolongator
transpose
product
spectral_radius
conversion

Triple products are 
expensive

28

GPU


