
Opportunities in developing a more robust and
scalable multigrid solver
Joint Lab Workshop 		 	 	 	 	 	 	 	 	 	 	 	 June 2013

Luke Olson
Department of Computer Science
University of Illinois at Urbana-Champaign

Map$ Shuffle$ Reduce$

problem

• challenges:
• complex, non-symmetric, unstructured problems
• computing environments less homogeneous

--- e.g. high throughput

[][][]A
x

b=

wanted: to solve large-scale, non-elliptic problems

solvers challenge (classic approach)

• Focus solvers development on
• robustness --- i.e., improve convergence

• scalability --- i.e., improve weak scaling

[][][]A
x

b=

solvers challenge (now)

• Focus solvers development on
• mapping optimal strategies to software/arch
• utilizing architectural advantages
• software flexibility***

[][][]A
x

b=

***see Jed Brown’s talk

The point of this talk

1. optimal strategies for multigrid robustness

2. performance strategies for multigrid for high-throughput

1. bringing optimizations to scale

2. integrating high-throughput advances

Highlight two advances in multigrid

Identify two challenge areas for collaboration

Multilevel view

1. attenuate high energy quickly
with with relaxation

2. attenuate low energy error
through coarse-grid correction

x0 x0 + !D

�1
r0

rc = PT r0 ē0 = Pec

x0 x0 + ē0relax

restrict

coarse solve

interpolate

correct

(PTAP)ec = rc Pneed

1

• none. Think of a framework.

• example: aggregation groups of fine nodes form coarse nodes

• this gives a pattern for

Which multigrid method?

P

fine: 15
coarse: 3

e1 (I � P (PTAP)�1PTA)Ge0

1

relax
residual

restrict
coarse solve

interpolate
correct

• find low energy: physics, adaptive methods, intuition

• strength measure between d.o.f.:
 edge weights, relaxation

• coarse point — fine point mapping:
 geometric, aggregation, independent set

• low complexity, accurate interpolation:
 weighted averages, relaxation, energy-minimization

• better cycling

• richer coarse grids

Typical Components
Se

tu
p

So
lv

e

P

1

optimizing energy

• should have low energy (low -norm or -norm)
1. determine sparsity pattern
2. minimize energy column-wise (parallel)

P A A⇤A

*** Olson, Schroder, Tuminaro, A general interpolation
strategy for algebraic multigrid using energy-
minimization, SISC, 2010.

e1 (I � P (PTAP)�1PTA)Ge0
relaxcoarse grid correction

1

2 R(P)

Interpolation: standard approach

• Set the sparsity pattern from aggregation

•reduce energy
•improve accuracy
•increase complexity

Ptent

1

Text

causes dense coarse matrices,
more communication

Range of Interpolation

250 255 260 265
0

1

In
te

rp
ol

at
io

n
W

ei
gh

t

Ideal
Classic

250 255 260 265
0

1

In
te

rp
ol

at
io

n
W

ei
gh

t

Ideal
Classic

250 255 260 265
0

1

In
te

rp
ol

at
io

n
W

ei
gh

t

Ideal
Energy−Min

�u

xx

+ sin(x)u
x

= f

1

sparsity pattern

Toward General Interpolation

• Want so that

1. Grow and fix sparsity pattern as

2. Minimize residual of

3. Constraint the minimization with

P u
low

2 R(P)

SkPtent

APj = 0 for each column j

1

strong graph

Puc

low

= u
low

Toward General Interpolation

• Hermitian (and positive definite): use CG

• Non-Hermitian: use GMRES

• Range of interpolation targets “right” low-energy

• Range of restriction* targets “left” low-energy

• Cost is comparable to that of standard smoothing

R = P ⇤

APj = 0 , min kPjkA

APj = 0 , min kPjkA⇤A

A⇤R⇤
j = 0 , min kR⇤

jkAA⇤

1

Example: recirculating flow

std. opt.
1/64 >150 24

1/128 >150 28
1/256 >150 33
1/512 >150 33

h

1

iterations

High-order discontinuous Galerkin: diffusion

1 3 5 7 9 11p
0

25

50

75

Ite
ra

tio
ns

Jacobi, Dist–Classic
Jacobi, Dist–Evol
En-Min, Dist–Classic
En-Min, Dist–Evol

key ingredients:
• conforming aggregations step
• adapt the near null space
• optimal interpolation

1

Collaboration #1

Opportunities

I. Optimal interpolation at scale
a. many decisions:

• optimize on communication distance, size, impact
• local vs non-local optimizations

b. geometric-style optimization
c. on-the-fly updates to the hierarchy (time, nonlinear, etc)
d. DD

II. Other optimizations:
a. adaptive setup
b. dynamic aggregation

1

Why Acceleration for Multigrid

potential: SpMVs*** are fast,
 scans+reductions are fast

useable software: CUDA + Thrust + Cusp

AMG “asks” for acceleration:
✓adaptive
✓thick near null-space
✓higher intensity work in optimizations

*** see Bill Gropp’s talk

2

Application
CU

RA
ND

CU
FF

T

CU
BL

AS Cusp
Thrust

CUDA

•expose fine-grained parallelism
•utilize fast kernels (gather, scatter, scans, sort, etc)

*** Bell, Dalton, Olson, Exposing fine-grained
parallelism in algebraic multigrid, 2011.

2CUSP

• fast development
• low overhead
• open source

Application
CU

RA
ND

CU
FF

T

CU
BL

AS Cusp
Thrust

CUDA

•expose fine-grained parallelism
•utilize fast kernels (gather, scatter, scans, sort, etc)

*** Bell, Dalton, Olson, Exposing fine-grained
parallelism in algebraic multigrid, 2011.

2CUSP

SpMM

• SMMP algorithm: very sequential
- requires O(ncol) storage to determine entries of each sparse row
- parallelism would require O(ncol) memory per thread

• Consider

A =


5 10 0
15 0 20

�
,=

2

664

(0, 0, 5)
(0, 1, 10)
(1, 0, 15)
(1, 2, 20)

3

775 , B =

2

4
25 0 30
0 35 40
45 0 50

3

5 ,=

2

6666664

(0, 0, 25)
(0, 2, 30)
(1, 1, 35)
(1, 2, 40)
(2, 0, 45)
(2, 2, 50)

3

7777775
,

C = A ⇤B

1. form intermediate view of
2. sort by row, col
3. contract by summing duplicates

C
C

C

2

SpMM

• Expand Primitives:
reduce, scatter, scan
expand with

• Sort Primitives:
sort by column keys

C =

2

66666666664

(0, 0, 125)
(0, 2, 150)
(0, 1, 350)
(0, 2, 400)
(1, 0, 375)
(1, 2, 450)
(1, 0, 900)
(1, 2, 1000)

3

77777777775

A(i, j) ⇤B(i, :)

A =


5 10 0
15 0 20

�
, B =

2

4
25 0 30
0 35 40
45 0 50

3

5 ,

C =

2

66666666664

(0, 0, 125)
(0, 1, 350)
(0, 2, 150)
(0, 2, 400)
(1, 0, 375)
(1, 0, 900)
(1, 2, 450)
(1, 2, 1000)

3

77777777775

2

SpMM

• Contract Primitives:
reduce

• insensitive to irregularity of input

• same “work” as SMMP

• storage cost can be large for intermediate (reduce by subdividing)

C =

2

66664

(0, 0, 125)
(0, 1, 350)
(0, 2, 550)
(1, 0, 1275)
(1, 2, 1450)

3

77775
=


125 350 550
1275 0 1450

�
.

2

SpMM Modeling

• Structure of expensive to (accurately) ascertain

• Structure of not representative of work

C = A ⇤B

C

*

C

1

2

3

4

5

6

7

8

9

10

11

12

13

14

=

w
or

k
2

SpMM Modeling

(0,0,10)&

(1,1,20)&

(1,2,30)&

(1,3,40)&

(2,3,50)&

(3,1,60)&

(0,0,1)&

(1,1,2)&

(1,3,3)&

(2,0,4)&

(2,1,5)&

(3,1,6)&

(3,3,7)&

(0,0,10)&

(1,3,60)&

(1,1,40)&

(1,1,150)&

(1,0,120)&

(1,3,280)&

(1,1,240)&

(2,3,350)&

(2,1,300)&

(3,3,180)&

(3,1,120)&

(0,0,10)&

(1,0,120)&

(1,1,40)&

(1,1,150)&

(1,1,240)&

(1,3,60)&

(1,3,280)&

(2,1,300)&

(2,3,350)&

(3,1,120)&

(3,3,180)&

(0,0,10)&

(1,0,120)&

(1,1,430)&

(1,3,340)&

(2,1,300)&

(2,3,350)&

(3,1,120)&

(3,3,180)&

A"

B"

Compress&Sort&Expand&

C"Join&&&&
Scale&

Map$ Shuffle$ Reduce$

outer
inner

2

expand

sort

contract

Collaboration #2

Opportunities

I. SpMM and other non-linear algebra optimized linear algebra optimizations
a. paraphrase Gropp: not everything should be reduced to linear algebra
b. How to use in a multinode-multiGPU environment?

II. Can we use hardware optimized scans/reduces at scale?
a. other programming models support this
b. P. Fischer makes at good case at CSE13***

III.How to incorporate low-level (useable) abstractions
a. CUSP flexible back-end
b. Better way to use, manage back-ends in a library code
c. DD?

2

***P. Fischer, PDE-Based Simulation Beyond
Petascale, CSE13

Summary of potential collaboration:

1. Redevelop optimized multigrid components
in a large-scale environment

2. Integrate architecture motivated multigrid
decisions into a heterogeneous environment

A comment on future collaboration:

3. Outline a path or roadmap or position on
resilience in solvers

Looking ahead to more collaboration

• Students can be a great conduit for moving forward
• one plan:

• student from Illinois 1/2 at ANL 1/2 in France for the summer
 + a shorter visit to France during Winter Break

• adjoint plan:
• student from France 1/2 at ANL 1/2 at Illinois for the summer

 + a short visit to Illinois (!) during Winter Break

• Co-developing a code
• Take something like GAMG as a base and fork it
• Trying this currently with ANL
• Retains buy-in to a code “structure”, but not a framework
• Allows ownership for a researcher or student or whomever

• Need a specific plan to carry out over the next 6 mo

• Nvidia for hardware

• software development: CUSP::MG

• software development: PyAMG

• LLNL, SNL for student support

http://code.google.com/p/cusp-library/
http://code.google.com/p/cusp-library/
http://www.pyamg.org
http://www.pyamg.org

0

0.3

0.5

0.8

1.0

Level 1 Level 2 Level 3 Level 4

GPU

strength
aggregation
tentative
prolongator
transpose
product
spectral_radius
conversion

Triple products are
expensive

28

GPU

