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Premise

I Traditional abstractions are comfortable, but not optimal

I Attempts to optimize lead to “tunnel vision”

I Principles are often better applied by considering context

I Transparency in formerly-opaque abstractions enables
composition that produces more effective optimization

I More regularity beyond the spatial domain



Performance of assembled versus unassembled
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I High order Jacobian stored unassembled using coefficients at
quadrature points, can use local AD

I Choose approximation order at run-time, independent for each field
I Precondition high order using assembled lowest order method
I Implementation > 70% of FPU peak, SpMV bandwidth wall < 4%



Beyond the spatial domain: The stack is deep
I forward model: transient PDE model

I u(t,x;p) with parameters p known (initial/boundary data,
coefficients, . . . )

I forward model with uncertainty: stochastic representation of
incompletely-modeled processes

I u(t,x,z;p) with noise z in stochastic space
I Design optimization with uncertainty

I minp
∫
z f (u(t,x,z,p))

I data assimilation: infer p from sparse observations d0 with noise y

p̂(t,x,d,d0) = argminp

∫
y

∫
z
‖d(u(t,x,z,p)+y)−d0‖2 +Prior(p)

I optimal experimental design: choose “affordable” sparse
observations d to minimize risk in the data assimilation problem
over a region of parameter/model space

d̂ = argmind

∫
p
‖p̂(t,x,d,d0(p))−p‖+ cost(d)

I “collocation” (decoupled ensemble) vs. Galerkin (coupled)



Principles

I Memory locality: cache reuse/sharing, GPU shared memory,
NUMA

I Get the maximum use out of data before we retire it from cache
I Exploitable regularity

I Vectorization: packed SSE/AVX/QPX, avoid warp divergence
I Coalesced loads, prefetchable streams
I Ability to share cache between threads
I Avoid contention in case of overlapped writes



The quest for exploitable regularity

Spatial domain

I Complex geometry

I Non-smooth transient
features (e.g., fracture,
corners, shocks)

I Free boundaries

I Boundary conditions

I Spatial adaptivity

I Only distribute spatial domain

I Pipeline length is costly

Temporal/stochastic domain

I Simple/no geometry

I Internally smoother (branch
jumps rare)

I Little or no boundary
conditions (initial conditions)

I Global time steps for stiff
problems (but local for
hyperbolic)

I Data size up to proportional to
entire simulation

I Aggregate: vectorize, amortize communication; same total work

I Synergy: mutually-beneficial reuse/accelerated convergence
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Example: s-step methods in 3D
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I Amortizing message latency is most important for strong-scaling

I s-step methods have high overhead for small subdomains

I Limited choice of preconditioners (none optimal)



Example: space-time methods (multilevel SDC/Parareal)

I PFASST algorithm (Emmett and Minion, 2013)
I Zero-latency messages (cf. performance model of s-step)
I Spectral Deferred Correction: iterative, converges to IRK (Gauss,

Radau, . . . )
I Stiff problems use implicit basic integrator (synchronizing on

spatial communicator)



Merging Implicit Runge-Kutta with Multigrid
I Expand view to space-time Implicit RK problem
I PFASST is a line smoother (accurate solve in spatial domain)
I PFASST uses finest-possible decomposition in time

(latency-intolerant)
I What about chunky space-time domains and a space-time

smoother?
I Aggregate

I Amortize or pipeline communication over stages (no overhead)
I Vectorize nonlinear residual over stages

I Synergy
I Reuse point/cell Jacobian in smoother for all stages

(point-modified Newton, cf. Implicit RK)
I Frozen τ for parabolic problems (Brandt and Greenwald, Parabolic

multigrid revisited, 1991)
I Selectively multiplicative in time (Vandewalle and Horton, Fourier

mode analysis of the multigrid waveform relaxation and
time-parallel multigrid methods, 1995)

I Block/recycling Krylov acceleration
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A notion of coupling rank

I “Full space” (spatial, temporal, parameters, stochastic, . . . )

input space output space
U V

AV,U

I AV,U : dependence of solution in subdomain V on data from
subdomain U

I Essential rank k of AV,U is number of singular values greater than
chosen relative tolerance

I Crude lower bound: at least k units of information must be
communicated from U to V

I Parallel distribution: high-rank couplings should be “nearby”



Implication of essential coupling rank for anisotropy

Anisotropic diffusion:

−∇ · (κ∇u) = f , κ =

(
ε 0
0 1

)

U

V

U VHigh-rank
Weak

I Identical distribution for input and output spaces is natural.
I The k items of data can be communicated in different ways:

I Increasingly-large subdomains at greater distance (tree-code)
I Interaction through coarse grid (multigrid, fast multipole)



Essential rank in space-time

I Higher rank coupling in time than space
I Hyperbolic equation ∆x = λmax∆t: causality cone is steeper in

time than space (equivalent for fastest wave).
I Parabolic: Green’s function decays faster in space than in time

(depends on ∆t)



Ramifications and research priorities
I No need to focus on strict independence

I We will communicate globally anyway
I Choose distributions to make long-distance (in

space/time/stochastic) communications low-rank
I “Treecode-to-FMM” transformations to further exploit low-rank

I Exploit structure to aggregate communication and vectorize
I Raise temporal and stochastic dimensions to first-class

I Think of algorithms in full space, then map to space-time
computational strategy

I Adaptive recognition of reusability/synergistic structure
I Load balancing due to adaptive spatio-temporal-stochastic reuse
I Evolution of software interfaces

I Nuanced problem structure
I Reusable components that do less than “solve” the sub-problem

I Extend analysis to “full-space” methods
I Programming tools

I Unintrusive manipulation of logical vector length
I Support for judicious use of cross-lane operations
I Asynchronous and aggregated communication



I Maximize science per Watt
I Huge scope remains at problem

formulation
I Raise level of abstraction at which a

problem is formally specified
I Algorithmic optimality is crucial


