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Premise

» Traditional abstractions are comfortable, but not optimal
> Attempts to optimize lead to “tunnel vision”
» Principles are often better applied by considering context

» Transparency in formerly-opaque abstractions enables
composition that produces more effective optimization

» More regularity beyond the spatial domain



Performance of assembled versus unassembled
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» High order Jacobian stored unassembled using coefficients at
quadrature points, can use local AD

» Choose approximation order at run-time, independent for each field

» Precondition high order using assembled lowest order method
» Implementation > 70% of FPU peak, SpMV bandwidth wall < 4%
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Beyond the spatial domain: The stack is deep

» forward model: transient PDE model
» u(t,x;p) with parameters p known (initial/boundary data,
coefficients, ...)
» forward model with uncertainty: stochastic representation of
incompletely-modeled processes
» u(t,x,3;p) with noise 3 in stochastic space
» Design optimization with uncertainty
 min, [, (u(t,x,3.p))
» data assimilation: infer p from sparse observations dj with noise 1

ﬁ(trx:d?d()) :argminp//||d(u(t,x,5,p)—i—t))—dOHz—i—Prior(p)
D]

» optimal experimental design: choose “affordable” sparse
observations d to minimize risk in the data assimilation problem
over a region of parameter/model space

q= argmind/ 1p(t,x,d, do(p)) — pl| +cost(d)
p

» “collocation” (decoupled ensemble) vs. Galerkin (coupled)



Principles

» Memory locality: cache reuse/sharing, GPU shared memory,
NUMA

» Get the maximum use out of data before we retire it from cache
» Exploitable regularity

» Vectorization: packed SSE/AVX/QPX, avoid warp divergence
» Coalesced loads, prefetchable streams

» Ability to share cache between threads

» Avoid contention in case of overlapped writes



The quest for exploitable regularity
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Global time steps for stiff
problems (but local for
hyperbolic)

Data size up to proportional to
entire simulation
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» Aggregate: vectorize, amortize communication; same total work

» Synergy: mutually-beneficial reuse/accelerated convergence



Example: s-step methods in 3D
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» Amortizing message latency is most important for strong-scaling
> s-step methods have high overhead for small subdomains
» Limited choice of preconditioners (none optimal)



Example: space-time methods (multilevel SDC/Parareal)

Total Time

PFASST algorithm (Emmett and Minion, 2013)

Zero-latency messages (cf. performance model of s-step)
Spectral Deferred Correction: iterative, converges to IRK (Gauss,
Radau, ...)

Stiff problems use implicit basic integrator (synchronizing on
spatial communicator)
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Merging Implicit Runge-Kutta with Multigrid
» Expand view to space-time Implicit RK problem

» PFASST is a line smoother (accurate solve in spatial domain)

» PFASST uses finest-possible decomposition in time
(latency-intolerant)
» What about chunky space-time domains and a space-time
smoother?
» Aggregate
» Amortize or pipeline communication over stages (no overhead)
» Vectorize nonlinear residual over stages
> Synergy

» Reuse point/cell Jacobian in smoother for all stages
(point-modified Newton, cf. Implicit RK)

» Frozen 7 for parabolic problems (Brandt and Greenwald, Parabolic
multigrid revisited, 1991)

» Selectively multiplicative in time (Vandewalle and Horton, Fourier
mode analysis of the multigrid waveform relaxation and
time-parallel multigrid methods, 1995)

» Block/recycling Krylov acceleration
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A notion of coupling rank

» “Full space” (spatial, temporal, parameters, stochastic, . ..)

input space output space

» Ay y: dependence of solution in subdomain V' on data from
subdomain U

» Essential rank k of Ay ¢ is number of singular values greater than
chosen relative tolerance

» Crude lower bound: at least k units of information must be
communicated from U to V

» Parallel distribution: high-rank couplings should be “nearby”



Implication of essential coupling rank for anisotropy

Anisotropic diffusion:
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» |dentical distribution for input and output spaces is natural.
» The k items of data can be communicated in different ways:

> Increasingly-large subdomains at greater distance (iree-code)
» Interaction through coarse grid (multigrid, fast multipole)



Essential rank in space-time

» Higher rank coupling in time than space
» Hyperbolic equation Ax = A< Af: causality cone is steeper in
time than space (equivalent for fastest wave).
» Parabolic: Green’s function decays faster in space than in time
(depends on Af)



Ramifications and research priorities

» No need to focus on strict independence
» We will communicate globally anyway
» Choose distributions to make long-distance (in
space/time/stochastic) communications low-rank
» “Treecode-to-FMM” transformations to further exploit low-rank
» Exploit structure to aggregate communication and vectorize
» Raise temporal and stochastic dimensions to first-class
» Think of algorithms in full space, then map to space-time
computational strategy
» Adaptive recognition of reusability/synergistic structure
» Load balancing due to adaptive spatio-temporal-stochastic reuse
» Evolution of software interfaces
» Nuanced problem structure
» Reusable components that do less than “solve” the sub-problem
» Extend analysis to “full-space” methods
» Programming tools
» Unintrusive manipulation of logical vector length
» Support for judicious use of cross-lane operations
» Asynchronous and aggregated communication



» Maximize science per Watt

» Huge scope remains at problem
formulation

» Raise level of abstraction at which a
problem is formally specified

» Algorithmic optimality is crucial



