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Defining Big Data

M. Stonebreaker defines big data with “the 3 V’s”. A big data application has
one of the following [1]:

= Big Volume — The application consumes terabytes (TB) or more data.
= Big Velocity — An application has much data, moving very fast.

= Big Variety — The application integrates data from a large variety of data
sources.

Similarly, the International Data Corporation (IDC) defines big data projects [2]
to:

= |nvolve the collection of more than 100 terabytes of data, or
= High-speed, real-time streaming of data, or

= Projects with data growing by 60 percent or more a year.

=  Typically involve two or more data formats.

[1] http://siliconangle.com/blog/2011/12/29/newsal-will-prevail-in-2012-says-mits-michael-stonebraker/
[2] S. Lehr’s NYT summary of IDC, “Big Data: Global Overview,” March 2012.




Data Intensive Science is the pursuit of scientific
discoveries via the capture, curation, and analysis of
big science data.

Data Intensive Science

The

Data can come from a variety of sources: FOURTH

Experimental systems PARADIGM
(e.g., ATLAS experiment at the Large Hadron Collider) Sy e Diees

High-throughput screening and sequencing
(e.g., resulting in GenBank sequence database)

Observational platforms
(e.g., Sloan Digital Sky Survey)

Sensor networks (e.g., environmental monitoring)
Simulations combined with other data sources (e.g., cosmology)



ATLAS Detector at the Large Hadron Collider

Muon Detectors  Tile Calorimeter Liquid Argon Calorimeter
.I,-"; \\ b, |
/

ATLAS has an “onion-layer”
structure with the innermost being

-\ —— the inner detector (Pixels, Silicon
| Tracker, and Transition Radiation
| // Tracker), followed by the

calorimeters (Liquid Argon and Tile)
and the muon detectors.
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Data reduction performed in the detector and in supporting cluster systems
Multiple data types stored:

— “Raw” events (serialization of detector readouts)
— Summarized events (reduced version of raw events)
— Analysis object data capturing physics objects (e.g., jets, muons)

Complex software infrastructure (POOL/ROOT) to serialize objects, store
them, and manage relationships

P. van Gemmeren et al, “The Event Data Store and |/O Framework for
the ATLAS Experiment at the Large Hadron Collider”, IASDS 2009.
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Genetic Sequence Data Bank (GeneBank)

1 10 20 30 40 50 60 70 79
————————— OSSO
GBSMP.SEQ Genetic Sequence Data Bank

April 15 1992
GenBank Flat File Release 74.0

Structural RNA Sequences

2 loci, 236 bases, from 2 reported sequences

LOCUS AAURRA 118 bp ss-rRNA RNA 16-JUN-1986
DEFINITION A.auricula-judae (mushroom) 5S ribosomal RNA.
ACCESSION K03160
VERSION K03160.1 GI:173593
KEYWORDS 55 ribosomal RNA; ribosomal RNA.
SOURCE A.auricula-judae (mushroom) ribosomal RNA.

ORGANISM Auricularia auricula-judae

Eukaryota; Fungi; Eumycota; Basidiomycotina; Phragmobasidiomycetes;
Heterobasidiomycetidae; Auriculariales; Auriculariaceae.
REFERENCE 1 (bases 1 to 118)

AUTHORS Huysmans,E., Dams,E., Vandenberghe,A. and De Wachter,R.

TITLE The nucleotide sequences of the 5S rRNAs of four mushrooms and
their use in studying the phylogenetic position of basidiomycetes
among the eukaryotes

JOURNAL Nucleic Acids Res. 11, 2871-2880 (1983)

FEATURES Location/Qualifiers
rRNA 1..118
/note="5S ribosomal RNA"
BASE COUNT 27 a 34 c 34 g 23 t
ORIGIN 5' end of mature rRNA.

1 atccacggcc ataggactct gaaagcactg catcccgtcc gatctgcaaa gttaaccaga
61 gtaccgccca gttagtacca cggtggggga ccacgcggga atcctgggtg ctgtggtt
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Nucleotide sequence database
maintained by National Center for
Biotechnology Information.

1790 formatted text files, ~500
Gbytes, 100+ billion base pairs,
significant curation demands,
growing exponentially.




Sloan Digital Sky Survey

= The instrument:
— 2.5m wide-angle optical telescope
— 120 Mpixels
— Integrated spectrograph
— Online since 2000
= QOriginal survey: 230 million objects,
930,000 galaxies (primary targets),
120,000 quasars, and 225,000 stars
= Four main datasets totaling ~40TBytes:

— Photometric catalog (500 attributes for each
element, reference to bitmap images)

— Spectroscopic catalog (admission and absorption lines, reference 1D spectra)
— Bitmap images in multiple color bands
— Spectra

= Data managed/accessed in multiple ways, SQL DB, Objectivity DB, flat files

Szalay et al, “The SDSS SkyServer — Public Access to the Sloan Digital Sky Survey Data,” ACM SIGMOD, 2002.
Sloan Digital Sky Survey web site, http://www.sdss.org/.
Fermilab Visual Media Services, “Sloan Digital Sky Survey telescope,” http://www.sdss.org/gallery/gal photos.html, 1998.




Crowdsourced Traffic Congestion Monitoring
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= Mobile phones as a sensor network
= Enabled in Google Maps for mobile

=  Augments existing sensors:

— Point detectors (e.g., inductance loops,
radar, video)

— Beacon-based probes (e.g., electronic
toll passes)

=  Especially helpful in providing data on
arterial roads

Goal: Keep scientists off the road and in
their laboratories.

“The bright side of sitting in traffic: Crowdsourcing road congestion data,”
http://googleblog.blogspot.fr/2009/08/bright-side-of-sitting-in-traffic.html
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Combining Simulation with Observations

Large Synoptic Survey Telescope Hybrid/Hardware Accelerated
Cosmology Code Framework
= Capabilities = Building understanding of structure
— 3D maps of mass distribution formation of universe
— Time-lapse imaging of faint, =  Simulation critical to understanding
moving objects latter, nonlinear, half of history
— Census of solar system down to = Code ported to multiple leadership
100m objects computing platforms, running at full
= Wide field survey telescope scale on Intrepid BG/P system, Mira
— Comes online in 2019 BG/Q system

— 3.2 Gpixel, exposure every 20 secs

— 1.28 PBytes per year Goal: Combine results of simulations

= Over 100 PBytes of data after with the observations, using statistical
processing methods, to infer the dynamical laws
governing the evolution of the

http://www.lIsst.org universe. Salman Habib (ANL)
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What about Computational Science?



\..____________
Computational Science has Big Volume

Data requirements for select 2011 INCITE 10000 ¢ Write s
applications at ALCF [ Read M
On-line Off-line [
Data  Data 1000 ¢
Pl Project (TBytes) (TBytes) i
Khokhlov Combustion in Gaseous é 100
Mixtures 1 17 | §
Baker Protein Structure 1 2 E’
Hinkel Laser-Plasma Interactions 60 60 10 _
Lamb Type la Supernovae 75 300 g
Vary Nuclear Structure and
Reactions 6 15 ]
Fischer  Fast Neutron Reactors 100 100 %7 Y. C’% S )(;?5 Q,@ % )2,/5
Mackenzie Lattice QCD 300 70 8, o0 2, % 2, %, % %, %,
Vashishta Fracture Behavior in @’70@ ’5}@/ %, 0, Y
Materials 12 72 s Project *o,é
Moser Engineering Design of Fluid S
Systems 3 200
Lele Multi-material Mixing 215 100 Amount of data accessed by top I/O users
Kurien  Turbulent Flows 10 20 during two month window on ALCF BG/P
Jordan Earthqua!<e Wave [Carns 2011].
Propagation 1000 1000

Tang Fustion Reactor Design 50 100
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GBytes/s

\..____________
Computational Science has Big Velocity

40
Read
35 scheduled maintenance Write -
scheduled maintenance network maintenance
30 storage maintenance )

EarthScience project usage change control system maintenance i

25 missing data lscheduled maintenance and scheduled maintenance

e Shown here: aggregate 1/O throughput on Argonne BG/P storage servers at
one minute intervals. Peaks in the 10s of Gbytes/sec.

* Blue Waters peak /0O rates of 1TByte/sec!

11



Computational Science N
has Big(ish) Variety / Bl s

= Complexity as an artifact of TS S " ! _
science problems and codes: i s Right Interior

— Coupled multi-scale simulations Carotid Artery
generate multi-component

dataset.
Atomistic data representations for

plasma, red blood cells, and
platelets from MD simulation.

Field data for ensemble average
solution generated by spectral
element method hydrodynamics
code [Grinberg 2011, Insley 2011]

.., Platelet
- Aggregation

\\\
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Much Computational Science is Data Intensive Science

" The leadership computing system is an instrument
= Recall: Data intensive science is the pursuit of scientific discoveries via the
capture, curation, and analysis of big science data

— Capture increasingly includes in situ data reduction, the simulation analog of
detector triggers

— Curation includes storing provenance necessary to repeat simulations

— Analysis often includes reorganizing data into formats more amenable to
processing, generation of derived datasets

a 13



An Example




Understanding behavior of a laser pulse
propagating through a hydrogen plasma

= VORPAL code used to simulate laser wakefield particle accelerator

— 3D simulation
— 30 timesteps

— 90 million particles per timestep, ~5 Gbytes of data per timestep
(circa 2008, a “big” run might have 100+ billion particles/timestep now)

= (Questions:
— Which particles become accelerated? How are they accelerated?
— How did the beam form? How did it evolve?

= Data management, analysis, and visualization:
— Data model support — HDF5, H5Part to store data with appropriate metadata
— Indexing — FastBit to enable quick identification of particles of interest,
associate particles between timesteps

— Visualization — Parallel coordinates view to help user select particles, Vislt as
deployment vehicle

Rubel et al. High performance multivariate visual data exploration for extremely large data.
SC08. November, 2008.
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Beam Selection

Parallel coordinates view of t =12

= @Grey particles represent initial selection
(px > 2*10°)

= Red particles represent “focus particles’

in first wake period following pulse
(px > 4.856*10%°) && (x > 5.649*10)

)

Volume rendering of plasma density with
focus particles included in red (t = 12)

= Helps locate beam within wake

px X py
(x10°9)  (x10"-6) (x10*9)




Tracing Particles
over Time

Tracing particles back to t =9 and
forward to t = 14 allows scientist to see

acceleration over time period:

= Heatmap shows particles constantly
accelerated over time (increase in
px, left to right).

= Grey particles show initial selection
(for reference).

PX

4.053e+08 4.367e+10 8.775e+10
2.163e+10 6.571e+10

)
More recent work shows: e
3
o

= Particles start out slow (blue, left),
undergo acceleration (reds), then
slow again as the plasma wave
outruns them (blue, right).

= Spiral structure shows particles
oscillating transversely in the
focusing field (new science).

1600° 4007 A
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How might big data influence leading computing
facilities and systems?



Extreme-Scale Computational Science Systems
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Extreme-Scale Data Intensive Systems

Inside Project Blackbox, racks of up to 38 servers apiece generate tremendous heat.
A panel of fans in front of each rack forces warm exhaust air through a heat exchanger,

which cools the air for the next rack {detail), and so on in a continuous loop.

DESIGN SPECS

Dimenslons: 8 x 8 x 20 feet
Weight: 20,000 pounds
Cooling water supply: 60 gallons per minute
Computing capacity: 7 terabytes
Datastorage: 2 petabytes

Alrflow

Servers .

Ethernet

harness — -\\

! 600-amp
Heat | power

! exchanger v’
A (uses cold ‘

% 'water) !
‘».; « ST

L

I J1HT 11E 1147

S\

{ .
Hot water out to M- Cold water in
external chiller

7

Sun Modular Datacenter (a.k.a. Project Blackbox) s mrre o
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Shifting Emphasis at Compute Facilities?

As data becomes increasingly
difficult/costly to move, emphasis
shifts further towards moving
analysis to the data.

In the context of experimental
facilities, this means co-locating
data intensive computing systems.

Leading data intensive computing
systems will become magnets for
important datasets.

Where sites host both data intensive science projects and computational
science systems, opportunities exist for leveraging data intensive computing
infrastructure in the computational science context as well.

21



Overhauling the Traditional HPC Support Systems

Data intensive computing systems hold the promise of replacing
traditional enterprise storage and visualization clusters while supporting

a wi

de variety of new science endeavors.

Current Leadership Computing Architecture

Leadership computing Commodity network Storage nodes run

system executes attaches leadership parallel file system server

simulation codes in batch  computing system to software. Attached to

mode. storage and analysis enterprise storage for
resources. data redundancy.

AN
/7777777777

-

“PAPPRAAAA
77777777777

.

Visualization nodes perform analysis calculations.
Usually multi-core nodes with GPU resources.

il

Leadership Computing System with
Data Intensive Back-end

Scientific codes
execute unchanged,
writing to storage as
before.

U
77777777777
RARRRRRARAS
/1777777777

Data intensive back-end system
places analysis operations close to
data. Commodity storage reduces
overall system cost, but requires
more sophisticated storage software.
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Laser Pulse Propagation with Data Intensive
Computing Support

Step |. VORPAL Step 2. Data written
simulation executes through HS5Part/HDF5
::(r;(c:if;inged OREoNIpS directly to objects. Semantic
structure stored alongside.
Step 3. Fastbit indices calculated
using active storage functions,
AN AR i ic i i
52 0 il B, leveraging semantic information
0 W i S B i stored alongside data.
N 1A~
I 1
;:§ ;:Q S 5 A
R AR tep 5. Access patterns are
ZHEe e B observed and system reorganizes
data, storing alternative layouts.
: : DS
User drives analysis A o, |
R o '
via GUI frontend. Rt Step 4. Analysis backend
Rt executes on hybrid storage/

analysis nodes, accessing
primarily local data elements.
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Applying Ourselves




Data Intensive Science Areas at Argonne

= Materials science

= Atmospheric science

= Cosmology

=  Computational biology

= Urban planning

= High energy physics

= Facility monitoring via sensor networks
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\
Research Areas in Data Intensive Scientific Computing

= Capture
— Efficient methods for persisting data
— Impedance matching between data sources and data intensive computing
system
— Methods of leveraging heterogeneous storage
— Targeted data reduction (i.e., determine and retain what the scientist needs)

= Curation
— Automation of provenance collection
— Accelerating development of ontologies and schemas for science data
— Storage (especially with respect to long-term resilience)
= Analysis
— Programming models for scientific data analysis
— Runtime, scheduling, operating system support for large scale DISC systems
— New algorithms for analyzing large, complex scientific datasets
e Statistical, graph, ...
— Tools for data movement and sharing

= Reusable tools to support multiple domains
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Thanks!




