
1

On distributed recovery for SPMD
deterministic HPC applications

Tatiana V. Martsinkevich, Thomas Ropars, Amina
Guermouche, Franck Cappello

2

Fault-tolerance in HPC
applications

• Number of cores on one CPU and number of CPU grows

• Can expect frequent hardware failures

• Using a fault tolerance protocol is a must

• Many protocols already exist

• Hybrid protocols are the most promising

3

Motive for this talk: HydEE

 HydEE – a hybrid hierarchical rollback-recovery protocol for
message passing applications

 Divide processes in groups (clusters)

 → Coordinated checkpointing within the cluster

 → Message logging between clusters

– Sender-side logging

 Assumption: send-deterministic applications

p

p

p p

p

p p

4

Send-determinism

• In any correct execution:
– Same messages are always sent in the same order

– The reception order has no impact on the execution

P0

P1

P2

m1

m2

m3

m4

P0

P1

P2

m1

m2

m3

m4
≈

5

HydEE: Treating failures

1. All processes inside C2 rollback to the last checkpoint

2. Others resend logged messages to processes in C2

P0

P1

P2

P3

C1

C2

C3

6

HydEE: Recovery issues

P0

P1

P2

P4

C1

C2

C3

• Causal dependency between messages

P3

m1

m2

m3
m4

m5

m5 can be
received by

mistake before m2

7

HydEE: Recovery issues

P0

P1

P2

P4

C1

C2

C3

1

3

4

4

• Causal dependency between messages

– Use phases to express dependency

• Update my phase when intra-cluster message received

• Update and increment when message comes from another cluster

• Guaranty of replay of orphan messages

– Send-determinism guarantees that the same message will be replayed
by the rolled back process

P3

1

1

1

1

1

3

m1

m2

m3
m4

2

m5

2

4

8

HydEE: Recovery process

• A separate recovery process to orchestrate the recovery

• It ensures causal order: no message is sent until there are
orphan messages in lower phase

• It has the info about

– The phase to which process rolls back

– Phases of all logged messages to be replayed

– Number of orphan messages in each phase

P0

P1

P2

P3

C1

C2

C3 2

3 3
RP

2

1

1

2

1

2

m1

m2

m3

m4

Orphan message

① m1, m2

replayed

② send next msg

② send next msg

1

9

Motivation and goal

 Recovery process can slow down the recovery
 Process has to wait for the permit from RP to resend the next logged

message

 The faster the network the more is impact of the centralized
recovery

Actually:

 Restarted process can immediately access logged messages

 It can figure out what messages not to replay

 If it could figure out causal order by itself recovery would
finish faster

Distributed recovery

10

Assumption about
determinism

 Relax the constraints of send-determinism

 One communication consists of : sender, receiver, message
content

 Typical property of SPMD applications

SPMD-determinism - in any correct execution the set of
communications is the same

P0

P1

P2

m1

m2

m3

m4

P0

P1

P2

m1

m2

m3

m4
≈

11

Distributed recovery: concept

• Restarted process gets all the logs and info about orphan
messages

• It decides autonomously whether

– to receive next message from the log

• which message it should be then?

– to receive next message from another restarted process

– the next message to send is an orphan message so no need to resend

• Phases don’t work anymore

Need a mechanism to help the process
make the decision

12

Localizing the
problem(1)

• Main source of confusion: message reception

• Assume that channels are FIFO
– won’t confuse messages in case of named reception

• Anonymous receptions (MPI_ANY_SOURCE) create
problems

13

Localizing the
problem(2)

After rollback P1
receives logs with:

m3, m3’ // from P0

m4, m4’ // from P2

for(int ii = 0; ii < num_iter; ii++) {

 for(int i = 0; i < nproc; i++) {
 if(i != myrank)

 mpi_send(buf1, count, MPI_INTEGER,
 i, tag0, MPI_COMM_WORLD);
 }

 for(int i = 0; i < nproc - 1; i++) {
 mpi_recv(buf2[i], count, MPI_INTEGER,

 MPI_ANY_SOURCE, tag0,
 MPI_COMM_WORLD, &rreq);
 }
mpi_barrier(MPI_COMM_WORLD);
}

P0

P1

P2

m1

m2

 *from the point of view of P1

m3

m4

ii = 0 ii = 1

m1’

m2’

m3’

m4’

can receive by
mistake e.g. m3
and m3’

14

Possible approaches

Goal: express causal dependency between
anonymous receptions in one process

 Two approaches:

1. Count my anonymous receptions and propagate to
all processes

2. Define communication sections that would separate
anonymous receptions

a) Adding directives #SECTION_START and #SECTION_END

- want to avoid this

b) Automatic runtime detection of sections

15

Counting number of
anonymous receptions

• Count my own anonymous receptions

• Keep a vector of counters of all the other processes

• Append own copy of vector to each sent message

• Update own copy with each message reception

After rollback:

• Choose msg with the corresponding counter ≤ my current
counter

• Works but not scalable 

P0

P1

P2

(0,0,0) (0,1,0)

ii = 0 ii = 1

m1’

m2’

m3’

m4’

 *from the point of view of P1

(0,2,0)

barrier

(2,2,2) (2,2,2) (2,3,2) (2,4,2)

(0,0,0)

(0,0,0)

(2,2,2)

(2,2,2)

16

Communication sections (1)

 Section confines matching (by tag) send and recv

 Counter for sections

– increment upon crossing the border between two sections

– append to each sent message

 Counter of sent message should match my current
counter

 Different counters for different messages tags

17

Communication sections(2)

P0

P1

P2

m1

m2

m3

m4

ii = 0 ii = 1

m1’

m2’

m3’

m4’

 *from the point of view of P1

for(int ii = 0; ii < num_iter; ii++) {

 for(int i = 0; i < nproc; i++) {
if(i != myrank)
 mpi_send(buf1, count, MPI_INTEGER,

 i, tag0, MPI_COMM_WORLD);
 }

 for(int i = 0; i < nproc - 1; i++) {
 mpi_recv(buf2[i], count, MPI_INTEGER,

 MPI_ANY_SOURCE, tag0,
 MPI_COMM_WORLD, &rreq);
 }
mpi_barrier(MPI_COMM_WORLD);
}

communication section

counter = 0 counter = 1

18

Distributed recovery with
sections

P0

P1

P2

m1

m2

m3

m4

ii = 0 ii = 1

m1’

m2’

m3’

m4’

 *from the point of view of P1counter = 0 counter = 1

• After rollback P1→others: “I restart from (tag0,cnt=0)”

• Others→P1: “Here is my message log starting from cnt=0:”

 m3(tag0, cnt=0), m3’(tag0, cnt=1) // from P0

 m4(tag0, cnt=0), m4’(tag0, cnt=1) // from P2

• Others→P1: “This I received from you since cnt=0:”

 (tag0, cnt=0)->m1, (tag0, cnt=1)->m1’ // from P0

 (tag0, cnt=0)->m2, (tag0, cnt=1)->m2’ // from P2

• In the anonymous reception choose messages with
matching counter

19

Automatic detection of
sections (1)

• Define calls that can start and end a section

– and guarantee that matching send and receive are within the same
section

• In a series of consecutive calls that can open/close the
section only the first call will trigger the action

Can open a section:

mpi_send
mpi_isend
mpi_irecv

Can close a section:

 mpi_recv
 mpi_wait(rreq)

mpi_waitall(rreqs)
 mpi_waitany(rreqs)

 for(int i = 0; i < nproc; i++) {
 mpi_send(buf1, count, MPI_INTEGER,

 i, tag0, MPI_COMM_WORLD);
 }

only the first
mpi_send will open
the section for tag0

20

Automatic detection of
sections (2)

• List of counters for each message tag (associated section)

– struct { int tag; int cnt; bool isOpened};

• Counter incremented when section is re-opened

for(int ii = 0; ii < num_iter; ii++) { // ii = 0, list of counters empty

 for(int i = 0; i < nproc; i++) {
if(i != myrank)
 mpi_send(buf1, count, MPI_INTEGER, i, // init cnt and open the section (tag0, 0, true)

 tag0, MPI_COMM_WORLD); // attach cnt=0 to the msg
 }
 for(int i = 0; i < nproc - 1; i++) {

 mpi_recv(buf2[i], count, MPI_INTEGER, // first recv closes the section (tag0, 0, false)
 MPI_ANY_SOURCE, tag0,
 MPI_COMM_WORLD, &rreq);
 }
mpi_barrier(MPI_COMM_WORLD);
}

Next loop by ii: increment counter
upon reaching first mpi_send.

21

Automatic detection of sections:
Asymmetric case(1)

• Sections are easy to detect if all the processes do the same
(SPMD parallelism)

• If the execution is not symmetric the definition of sections
collapses

for(int ii = 0; ii < num_iter; ii++) {
 if (myrank < nproc / 2) {
 for(int i = nproc / 2 ; i < nproc; i++) {

 mpi_send(buf1, count, MPI_INTEGER, i,
 tag0, MPI_COMM_WORLD);

 }
 } else {
 for(int i = 0; i < nproc / 2; i++) {

 mpi_recv(buf2[i], count, MPI_INTEGER,
 MPI_ANY_SOURCE, tag0,
 MPI_COMM_WORLD, &req[i]);
 }
 }
mpi_barrier(MPI_COMM_WORLD);
}

proc group1:
mpi_send will open a section
but no matching mpi_recv to
close it

proc group 2:
mpi_recv can only close a
section, no matching
mpi_send to open it

22

Automatic detection of sections:
Asymmetric case(2)

• Use synchronization calls to detect end of section?

– it’s possible to write asymmetric program without explicit
synchronization (e.g. ping-pong with two tags)

• Re-define set of calls to open and close a section?

– Two sets overlap →don’t know to which set a call belongs

SYMMETRIC
Can start a section:

mpi_send
mpi_isend
mpi_irecv

Can end a section:
 mpi_recv

 mpi_wait(rreq)
mpi_waitall(rreqs)

 mpi_waitany(rreqs)

ASYMMETRIC

Can start & end a section:
mpi_send
mpi_isend
mpi_recv

No
solution

yet
+

23

Future work

• Find a solution for automatic section
detection for asymmetric case

• Come up with a completely different
approach?

	On distributed recovery for SPMD deterministic HPC applications
	Fault-tolerance in HPC applications
	Motive for this talk: HydEE
	Send-determinism
	HydEE: Treating failures
	Slide 6
	HydEE: Recovery issues
	HydEE: Recovery process
	Motivation and goal
	Assumption about determinism
	Distributed recovery: concept
	Localizing the problem(1)
	Localizing the problem(2)
	Possible approaches
	Counting number of anonymous receptions
	Communication sections (1)
	Communication sections(2)
	Slide 18
	Automatic detection of sections (1)
	Automatic detection of sections (2)
	Automatic detection of sections: Asymmetric case(1)
	Automatic detection of sections: Asymmetric case(2)
	Future work

