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Fault-tolerance in HPC 
applications 

• Number of cores on one CPU and number of CPU grows

• Can expect  frequent hardware failures

• Using a fault tolerance protocol is a must

• Many protocols already exist 

• Hybrid protocols are the most promising 
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Motive for this talk: HydEE

 HydEE – a hybrid hierarchical rollback-recovery protocol for 
message passing applications

 Divide processes in groups (clusters)

 → Coordinated checkpointing within the cluster

 → Message logging between clusters 

– Sender-side logging 

 Assumption: send-deterministic applications
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Send-determinism

• In  any correct execution:
–  Same messages are always sent in the same order

–  The reception order has no impact on the execution
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HydEE: Treating failures

1. All processes inside C2 rollback to the last checkpoint

2. Others resend logged messages to processes in C2  
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HydEE: Recovery issues 
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HydEE: Recovery issues 
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• Causal dependency between messages  

– Use phases to express dependency  

• Update my phase when intra-cluster message received 

• Update and increment when message comes from another cluster

• Guaranty of replay of orphan messages

– Send-determinism guarantees that the same message will be replayed 
by the rolled back process

P3

1

1

1

1

1

3

m1

m2

m3
m4

2

m5

2

4



8

HydEE: Recovery process

• A separate recovery process to orchestrate the recovery

• It ensures causal order: no message is sent until  there are 
orphan messages in lower phase

• It has the info about

– The phase to which process rolls back

– Phases of all logged messages to be replayed

– Number of orphan messages in each phase
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Motivation and goal

 Recovery process can slow down the recovery
 Process has to wait for the permit from RP to resend the next logged 

message

 The faster the network the more is impact  of the centralized 
recovery

Actually:

 Restarted process can immediately access logged messages

 It can figure out what messages not to replay

 If it could figure out causal order by itself recovery would 
finish faster

Distributed recovery
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Assumption about  
determinism

 Relax the constraints of send-determinism 

 One communication consists of : sender, receiver, message 
content

 Typical property of SPMD applications

SPMD-determinism - in any correct execution the set of 
communications is the same
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Distributed recovery: concept

• Restarted process gets all the logs and info about orphan 
messages

• It decides autonomously whether

– to receive next message from the log

• which message it should be then? 

– to receive next message from another restarted process

– the next message to send is an orphan message so no need to resend

• Phases don’t work anymore 

Need a mechanism to help the process 
make the decision
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Localizing the 
problem(1)

• Main source of confusion: message reception

• Assume that channels are FIFO
– won’t confuse messages in case of named reception

• Anonymous receptions (MPI_ANY_SOURCE) create 
problems
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Localizing the 
problem(2)

After rollback P1 
receives logs with:

m3, m3’  // from P0 

m4, m4’   // from P2 

for( int  ii = 0; ii < num_iter; ii++ ) {

    for( int i = 0; i < nproc; i++) {
      if( i  != myrank )

    mpi_send( buf1, count, MPI_INTEGER,
                            i, tag0, MPI_COMM_WORLD );
    }

    for( int i = 0; i < nproc - 1; i++) {
 mpi_recv( buf2[i], count, MPI_INTEGER,  

                            MPI_ANY_SOURCE, tag0, 
                            MPI_COMM_WORLD, &rreq );
    }
mpi_barrier( MPI_COMM_WORLD );
}
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Possible approaches

Goal: express causal dependency between  
anonymous receptions in one process

 Two approaches:

1. Count my anonymous receptions and propagate to 
all processes

2. Define communication sections that would separate 
anonymous receptions  

a) Adding directives #SECTION_START and  #SECTION_END

- want to avoid this

b) Automatic runtime detection of sections
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Counting number of 
anonymous receptions 

• Count my own anonymous receptions

• Keep a vector of counters of all the other processes

• Append own copy of vector to each sent message

• Update own copy with each message reception

After rollback:

• Choose msg with the corresponding counter ≤ my current  
counter

• Works but not scalable 
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Communication sections (1)

 Section confines  matching (by tag) send and recv 

 Counter for sections

– increment upon crossing the border between two sections

– append to each sent message

 Counter of sent message should match my current 
counter 

 Different counters for different messages tags
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Communication sections(2)
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for( int  ii = 0; ii < num_iter; ii++ ) {

    for( int i = 0; i < nproc; i++) {
if( i  != myrank ) 
   mpi_send( buf1, count, MPI_INTEGER,

                            i, tag0, MPI_COMM_WORLD );
    }

    for( int i = 0; i < nproc - 1; i++) {
 mpi_recv( buf2[i], count, MPI_INTEGER,  

                            MPI_ANY_SOURCE, tag0, 
                            MPI_COMM_WORLD, &rreq);
    }
mpi_barrier( MPI_COMM_WORLD );
}

communication section

counter = 0 counter = 1
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Distributed recovery with 
sections
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• After rollback P1→others: “I restart from  (tag0,cnt=0)”

• Others→P1: “Here is my message log starting from cnt=0:”

     m3(tag0, cnt=0), m3’(tag0, cnt=1)      // from P0

     m4(tag0, cnt=0), m4’(tag0, cnt=1)     // from P2

• Others→P1: “This I received from you since cnt=0:”

     (tag0, cnt=0)->m1, (tag0, cnt=1)->m1’     // from P0

     (tag0, cnt=0)->m2, (tag0, cnt=1)->m2’     // from P2

• In the anonymous reception choose messages with   
matching counter
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Automatic detection of 
sections (1)

• Define calls that can start and end a section 

–  and guarantee that matching send and receive are within the same 
section

• In  a series of consecutive calls that can open/close the 
section only the first call will trigger the action

Can open a section:

mpi_send
mpi_isend
mpi_irecv

Can close  a section:

 mpi_recv
 mpi_wait(rreq)  

mpi_waitall(rreqs)
 mpi_waitany(rreqs)

 for( int i = 0; i < nproc; i++) {
 mpi_send( buf1, count, MPI_INTEGER,

                            i, tag0, MPI_COMM_WORLD );
    }

only the first 
mpi_send will open 
the  section for tag0
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Automatic detection of 
sections (2)

• List of counters for each message tag (associated section)

– struct { int tag; int cnt; bool isOpened};

• Counter incremented when section is re-opened

for( int  ii = 0; ii < num_iter; ii++ ) {       // ii = 0, list of counters empty 

    for( int i = 0; i < nproc; i++) {
if( i  != myrank )
   mpi_send( buf1, count, MPI_INTEGER, i,  //  init cnt and open the section ( tag0, 0, true)

                          tag0, MPI_COMM_WORLD );      // attach cnt=0 to the msg
    }
    for( int i = 0; i < nproc - 1; i++) {

 mpi_recv( buf2[i], count, MPI_INTEGER,  // first recv closes the section (tag0, 0, false) 
                            MPI_ANY_SOURCE, tag0,         
                            MPI_COMM_WORLD, &rreq );
    }
mpi_barrier( MPI_COMM_WORLD );
}

Next loop by ii: increment counter 
upon reaching first mpi_send. 
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Automatic detection of sections: 
Asymmetric case(1)

• Sections are easy to detect if all the processes do the same 
(SPMD parallelism)

• If the execution is not symmetric the definition of sections 
collapses

for( int  ii = 0; ii < num_iter; ii++ ) {       
  if ( myrank < nproc / 2 ) { 
       for( int i = nproc / 2 ; i < nproc; i++) {

        mpi_send( buf1, count, MPI_INTEGER, i, 
        tag0, MPI_COMM_WORLD );    

       }
  } else {
    for( int i = 0; i < nproc / 2; i++) {

 mpi_recv( buf2[i], count, MPI_INTEGER,  
                            MPI_ANY_SOURCE, tag0, 
                          MPI_COMM_WORLD, &req[i] );
     }
  }
mpi_barrier( MPI_COMM_WORLD );
}

proc group1: 
mpi_send will open a section 
but no matching mpi_recv  to 
close it

proc group 2:
mpi_recv can only close a 
section, no matching 
mpi_send to open it



22

Automatic detection of sections: 
Asymmetric case(2)

• Use synchronization calls to detect end of section?

– it’s possible to write asymmetric program without explicit 
synchronization (e.g. ping-pong with two tags)

• Re-define set of calls to open and close a section?

– Two sets overlap →don’t know to which set a call belongs 

SYMMETRIC
Can start a section:

mpi_send
mpi_isend
mpi_irecv

Can end  a section:
 mpi_recv

 mpi_wait(rreq)  
mpi_waitall(rreqs)

 mpi_waitany(rreqs)

ASYMMETRIC

Can start & end a section:
mpi_send
mpi_isend
mpi_recv

No 
solution 

yet
+
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Future work

• Find  a solution for automatic section 
detection for asymmetric case 

• Come up with a completely different 
approach?
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