
Analyses and Modeling of Applications Used

to Demonstrate Sustained Petascale

Performance on Blue Waters

Torsten Hoefler
With lots of help from the AUS Team and Bill Kramer at NCSA!

All used images belong to the owner/creator!

2/29

The State of Performance Measurements

• Most used metric: Floating Point Performance

• That’s what limited performance in the 80’s!

• Systems were balanced, peak was easy!

• FP performance was the limiting factor

• Architecture Update (2012):

• Deep memory hierarchies make systems highly

unbalanced

• Caches mitigate the effect by exploiting

algorithmic structure and data locality

3/29

Rough Computational Algorithm Classification

• High locality, moderate locality, low locality

• Highly Structured

• Dense linear algebra

• FFT

• Stencil

• Semi-structured

• Adaptive refinements

• Sparse linear algebra

• Unstructured

• Graph computations

4/29

How do we assess performance?

• Microbenchmarks

• Libraries (DGEMM, FFT)

• Communication (p2p, collective)

• …

• Application Microbenchmark

• HPL (for historic reasons?)

• NAS (outdated)

• …

• Applications

5/29

We still somehow agree on FLOPS

• … because that’s what we always did

• And it’s an OK metric

• But the benchmarks should reflect the workload

• “Sustained performance”

• Cf. “real application performance”

• In the Blue Waters context

• “Sustained Petascale Performance” (SPP)

• Reflects the NSF workload

6/29

The SPP Metric

• Enables us to

• compare different computer systems

• Verify system performance and correctness

• Monitor performance through lifetime

• Guide design of future systems

• It has to represent the “average workload” and

must still be of manageable size

• We chose ten applications (8 x86, 4 GPU)

• Performance is geometric mean of all apps

7/29

Blue Waters in a Nutshell

• XE6 with AMD Interlagos 2.3-2.6 (3.0?) GHz

• ~390k BD modules, ~780k INT cores

• XK6 with Kepler GPUs

• ~3k

• Gemini Torus

• Very large (23x24x24), BB-challenged, torus

• How do we make sure the (heterogeneous)

system is ready to fulfill it’s mission?

• Well, confirm a certain SPP number (> 1PF!)

8/29

Validating a System Model – Memory I

• Stride-1 word load/store/copy (32 MiB data):

• 1 int core r/w/c: 3.8 / 4 / 3 GB/s

• 16 int cores (1 IL) r/w/c: 32 / 16 / 9.6 GB/s

• 32 int cores (2 IL) r/w/c: 64 / 32 / 19.8 GB/s

• Comments:

• Very high fairness between cores

• Very low variance between measurements

 Measured with Netgauge 2.4.7, pattern memory/stream

9/29

Validating a System Model – Memory II

• CL latency (random pointer chase, 1 GiB data):

• 1 int core: 110 ns

• 16 int cores (1 IL): 257 ns

• 32 int cores (2 IL): 258 ns

• Comments:

• High fairness between cores

• Low variance between measurements

Measured with Netgauge 2.4.7, pattern memory/pchase

10/29

Validating a System Model – Memory III

• Random word access bandwidth (32 MiB data):

• 1 int core r/w/c: 453 / 422 / 228 MiB/s

• 16 int cores (1 IL) r/w/c: 241 / 119 / 77 MiB/s

• 32 int cores (2IL) r/w/c: 241 / 119 / 77 MiB/s

• Comments:

• Very high fairness between cores

• Very low variance between measurements

Measured with Netgauge 2.4.7, pattern memory/rand

11/29

Roofline Model for Interlagos

12/29

Validating a System Model – Network Scaling

• Effective Bisection Bandwidth and Variance

• Expect (3D torus bisection limit): 7.5 TB/s

32 processes per node 1 process per node

Measured with Netgauge 2.4.7, pattern ebb

13/29

Validating a System Model – Network Scaling

• Average random latency and variance

32 processes per node 1 process per node

50 us

5 us

Measured with Netgauge 2.4.7, pattern ebb

14/29

Validating a System Model – Collectives
• Large message (4k) alltoall performance

• Model: unclear (depends on mapping etc.)

32 processes per node 1 process per node

10 MB/s/proc 20x

Measured with Netgauge 2.4.7, pattern nbcolls

15/29

The SPP Application Mix

• Representative Blue Waters applications:

• NAMD – molecular dynamics

• MILC, Chroma – Lattice Quantum Chromodynamics

• VPIC, SPECFEM3D – Geophysical Science

• WRF – Atmospheric Science

• PPM – Astrophysics

• NWCHEM, GAMESS – Computational Chemistry

• QMCPACK – Materials Science

16/29

Upping my FLOPS (if I was a vendor)

• Algorithms may have different FLOP counts

• Slow time to solution but high FLOPS (dense LA)

• Same time to solution, more FLOPS

• Single of half FLOPS (esp. GPUs)

• Redundant FLOPS for parallel codes

• Performance counters are thus not reliable!

• Just count the observed, not the necessary

FLOPS

17/29

Reference FLOP Counts

• We establish “reference FLOP count”

• Specific to an input problem

• Ideally established analytically

• Or (if necessary) on reference code on x86

• Single-core run (or several parallel runs)

• Input problem needs to be clearly defined

• Set the right expectations

• Real, complete science run vs. maximum FLOPS

18/29

The Grand Modeling Vision

• Our very high-level strategy consists of the

following six steps:

1) Identify input parameters that influence runtime

2) Identify application kernels

3) Determine communication pattern

4) Determine communication/computation overlap

5) Determine sequential baseline

6) Determine communication parameters

Empiric

Analytic

Hoefler, Gropp, Snir, Kramer: Performance Modeling for Systematic Performance Tuning , SC11

19/29

A Simplified Modeling Method

• Fix input problem (omit step 1)

• No fancy tools, simple library using PAPI (libPGT)

• Determine performance-critical kernels

• We demonstrate a simple method to identify kernels

• Analyze kernel performance

• Using black-box counter approach

• More accurate methods if time permits

• Establish system bounds

• What can be improved? Are we hitting a bottleneck?

20/29

Performance Counter Sanity Checks

• Running small test kernels to check counters

• s=small, l=large

• Stream: 2 GB/s per integer core

• LL_CACHE_MISSES are L2 misses!?

• Still a proxy metric (use with caution!)

21/29

NAMD

• Dynamic scheduling

complicates model

• Excellent cache

locality

• PME performs well

but will slow down at

scale (alltoall)

• Good IPC

22/29

• Five phases, CG most

critical at scale

• Low FLOPs and IPC

• Turbo boost seems

to help here!

• Low FLOPs are under

investigation (already

using SSE)

MILC

23/29

PPM

• Many micro-phases

• Hard to instrument

• Very highly optimized

by science team

• Cache blocking

• High FLOP rate

• High locality

24/29

QMCPACK

• Variational Monte

Carlo initializes

• Performance issues

are investigated

• Diffusion Monte

Carlo:

• load balance (LB)

• update walker (uw)

25/29

WRF

• Microphysics dominates

• Low performance, many

branches

• Planet Boundary Layer

also problematic

• Turbo Boost helps!

• Runge Kutta is fast

• High locality

26/29

SPECFEM3D

• Two phases, both do

small mat-mat mult

• Internal forces perform

well

27/29

NWCHEM

• Highly optimized

• Even running in

turbo boost!

• Very good locality

• Steps 3+4 decent

• Step 5 close to peak!

28/29

Some Early Conclusions

• Average CI: 0.43 FLOPS/B (min: 0.1, max: 1.8)

• Required CI: 8 GF/s / 4 GB/s 4 FLOPS/B

• Average Effective Frequency: 2.40 GHz

• Anticipated frequency: 2.45 GHz

• Average FLOP rate: 1.48 GF (min: 398 GF

(WRF), max: 6.876 GF (NWCHEM))

• 15% of peak

• Standard deviation: 1.37 GF (!!!)

29/29

Conclusions & Future Work

• We analyzed performance of

several SPP applications

• Performance modeling techniques

• Kernel classification through IPC works well

• Not automatic yet

• Kernel profiling works mostly

• Need better/more interpretation of counters

• Extending towards communication models

• “MPI counters”, congestion, etc.

30/29

Acknowledgments

• Thanks to

• Gregory Bauer (pulling together the data)

• Victor Anisimov, Eric Bohm, Robert Brunner, Ryan

Mokos, Craig Steffen, Mark Straka (SPP PoCs)

• Bill Kramer, Bill Gropp, Marc Snir (general

modeling ideas/discussions)

• The Cray performance group (Joe Glenski et al.)

• The National Science Foundation

