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The State of Performance Measurements 

• Most used metric: Floating Point Performance 

• That’s what limited performance in the 80’s! 

• Systems were balanced, peak was easy! 

• FP performance was the limiting factor 

• Architecture Update (2012): 

• Deep memory hierarchies make systems highly 

unbalanced 

• Caches mitigate the effect by exploiting 

algorithmic structure and data locality 
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Rough Computational Algorithm Classification 

• High locality, moderate locality, low locality 

• Highly Structured 

• Dense linear algebra 

• FFT 

• Stencil  

• Semi-structured  

• Adaptive refinements  

• Sparse linear algebra 

• Unstructured 

• Graph computations 
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How do we assess performance? 

• Microbenchmarks 

• Libraries (DGEMM, FFT) 

• Communication (p2p, collective) 

• … 

• Application Microbenchmark 

• HPL (for historic reasons?) 

• NAS (outdated) 

• … 

• Applications  
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We still somehow agree on FLOPS 

• … because that’s what we always did  

• And it’s an OK metric 

• But the benchmarks should reflect the workload 

• “Sustained performance” 

• Cf. “real application performance” 

• In the Blue Waters context 

• “Sustained Petascale Performance” (SPP) 

• Reflects the NSF workload 
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The SPP Metric 

• Enables us to 

• compare different computer systems 

• Verify system performance and correctness 

• Monitor performance through lifetime 

• Guide design of future systems 

• It has to represent the “average workload” and 

must still be of manageable size 

• We chose ten applications (8 x86, 4 GPU) 

• Performance is geometric mean of all apps 
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Blue Waters in a Nutshell 

• XE6 with AMD Interlagos 2.3-2.6 (3.0?) GHz 

• ~390k BD modules, ~780k INT cores 

• XK6 with Kepler GPUs 

• ~3k 

• Gemini Torus 

• Very large (23x24x24), BB-challenged, torus 

• How do we make sure the (heterogeneous) 

system is ready to fulfill it’s mission? 

• Well, confirm a certain SPP number (> 1PF!) 
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Validating a System Model – Memory I 

 

• Stride-1 word load/store/copy (32 MiB data): 

• 1 int core r/w/c: 3.8 / 4 / 3 GB/s  

• 16 int cores (1 IL) r/w/c: 32 / 16 / 9.6 GB/s 

• 32 int cores (2 IL) r/w/c: 64 / 32 / 19.8 GB/s 

• Comments: 

• Very high fairness between cores 

• Very low variance between measurements 

 

 

 Measured with Netgauge 2.4.7, pattern memory/stream 
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Validating a System Model – Memory II 

 

• CL latency (random pointer chase, 1 GiB data): 

• 1 int core: 110 ns 

• 16 int cores (1 IL): 257 ns 

• 32 int cores (2 IL):  258 ns 

• Comments: 

• High fairness between cores 

• Low variance between measurements 

 

 

Measured with Netgauge 2.4.7, pattern memory/pchase 
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Validating a System Model – Memory III 

 

• Random word access bandwidth (32 MiB data): 

• 1 int core r/w/c: 453 / 422 / 228 MiB/s 

• 16 int cores (1 IL) r/w/c: 241 / 119 / 77 MiB/s 

• 32 int cores (2IL) r/w/c: 241 / 119 / 77 MiB/s 

• Comments: 

• Very high fairness between cores 

• Very low variance between measurements 

 

 

Measured with Netgauge 2.4.7, pattern memory/rand 
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Roofline Model for Interlagos 
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Validating a System Model – Network Scaling 

• Effective Bisection Bandwidth and Variance 

• Expect (3D torus bisection limit): 7.5 TB/s 

 

 

 

32 processes per node 1 process per node 

Measured with Netgauge 2.4.7, pattern ebb 
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Validating a System Model – Network Scaling 

• Average random latency and variance 

 

 

 

32 processes per node 1 process per node 

50 us 

5 us 

Measured with Netgauge 2.4.7, pattern ebb 
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Validating a System Model – Collectives 
• Large message (4k) alltoall performance 

• Model: unclear (depends on mapping etc.) 

 

32 processes per node 1 process per node 

10 MB/s/proc 20x 

Measured with Netgauge 2.4.7, pattern nbcolls 
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The SPP Application Mix 

• Representative Blue Waters applications: 

• NAMD – molecular dynamics 

• MILC, Chroma – Lattice Quantum Chromodynamics 

• VPIC, SPECFEM3D – Geophysical Science 

• WRF – Atmospheric Science 

• PPM – Astrophysics 

• NWCHEM, GAMESS – Computational Chemistry 

• QMCPACK – Materials Science 
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Upping my FLOPS (if I was a vendor) 

• Algorithms may have different FLOP counts 

• Slow time to solution but high FLOPS (dense LA) 

• Same time to solution, more FLOPS  

• Single of half FLOPS (esp. GPUs) 

• Redundant FLOPS for parallel codes 

• Performance counters are thus not reliable! 

• Just count the observed, not the necessary 

FLOPS 

 



17/29  

 

Reference FLOP Counts 

• We establish “reference FLOP count” 

• Specific to an input problem 

• Ideally established analytically 

• Or (if necessary) on reference code on x86 

• Single-core run (or several parallel runs) 

• Input problem needs to be clearly defined 

• Set the right expectations 

• Real, complete science run vs. maximum FLOPS 
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The Grand Modeling Vision 

• Our very high-level strategy consists of the 

following six steps: 

1) Identify input parameters that influence runtime 

2) Identify application kernels 

3) Determine communication pattern 

4) Determine communication/computation overlap 
 

5) Determine sequential baseline 

6) Determine communication parameters 

 

Empiric 

Analytic 

Hoefler, Gropp, Snir, Kramer: Performance Modeling for Systematic Performance Tuning , SC11 
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A Simplified Modeling Method 

• Fix input problem (omit step 1) 

• No fancy tools, simple library using PAPI (libPGT) 

• Determine performance-critical kernels 

• We demonstrate a simple method to identify kernels 

• Analyze kernel performance 

• Using black-box counter approach 

• More accurate methods if time permits 

• Establish system bounds 

• What can be improved? Are we hitting a bottleneck? 
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Performance Counter Sanity Checks 

• Running small test kernels to check counters 

• s=small, l=large 

• Stream: 2 GB/s per integer core 

• LL_CACHE_MISSES are L2 misses!? 

• Still a proxy metric (use with caution!) 
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NAMD 

• Dynamic scheduling 

complicates model 

• Excellent cache  

locality 

• PME performs well 

but will slow down at 

scale (alltoall)  

• Good IPC 
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• Five phases, CG most 

critical at scale 

• Low FLOPs and IPC 

• Turbo boost seems 

to help here! 

• Low FLOPs are under 

investigation (already 

using SSE) 

 

 

 

MILC 
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PPM 

• Many micro-phases 

• Hard to instrument 

• Very highly optimized 

by science team 

• Cache blocking 

• High FLOP rate 

• High locality 
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QMCPACK 

• Variational Monte 

Carlo initializes 

• Performance issues 

are investigated 

• Diffusion Monte 

Carlo:  

• load balance (LB)  

• update walker (uw) 

 

 



25/29  

 

WRF 

• Microphysics dominates 

• Low performance, many 

branches 

• Planet Boundary Layer  

also problematic 

• Turbo Boost helps! 

• Runge Kutta is fast 

• High locality 
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SPECFEM3D 

• Two phases, both do 

small mat-mat mult 

• Internal forces perform 

well 
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NWCHEM 

• Highly optimized 

• Even running in 

turbo boost! 

• Very good locality 

• Steps 3+4 decent 

• Step 5 close to peak! 
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Some Early Conclusions 

• Average CI: 0.43 FLOPS/B (min: 0.1, max: 1.8) 

• Required CI: 8 GF/s / 4 GB/s  4 FLOPS/B 

• Average Effective Frequency: 2.40 GHz 

• Anticipated frequency: 2.45 GHz 

• Average FLOP rate: 1.48 GF (min: 398 GF 

(WRF), max: 6.876 GF (NWCHEM)) 

• 15% of peak  

• Standard deviation: 1.37 GF (!!!) 
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Conclusions & Future Work 

• We analyzed performance of  

several SPP applications 

• Performance modeling techniques 

• Kernel classification through IPC works well 

• Not automatic yet 

• Kernel profiling works mostly 

• Need better/more interpretation of counters 

• Extending towards communication models 

• “MPI counters”, congestion, etc. 
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