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Overview

" |ntroduction & Context
— Motivation
— Qverview of research efforts

" Triton Data Model
— Overview & Situation
— Operations
— Examples

"= Conclusion
— Open Questions
— Future work

Note: Early work, things might change! Feedback welcome!
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information

Why a hew data model?

zpressiveness of A)PJ ﬁorggﬂex data ’— concurrency aware

i Application Application
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objects, attributes

* Model? (!= API, '=Implementation)

* POSIX I/O API dates from ~1970: Plenty of research above and below POSIX
but relatively little changes to POSIX (POSIX HPC extensions?)

* High-Level Libraries adapt to the application’s data model but are more and more restricted
by the POSIX API.

* The landscape changed: smart (object) distributed storage, application concurrency
(need for scalable synchronization primitives and metadata operations)
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Known Problems

Model Issues I ‘ Implementation Issues I

" File locking & synchronization (inter-node synchronization)
— Implementing MPI-IO shared file pointer
— Manipulate meta data in high level I/O data formats (HDF5)

" Mapping application model to the file model (flat file)
— Chunking, space efficiency, unlimited dimensions, ...

" Scalable metadata operations

— Readdir + stat (readdirplus)
— Generic namespace support
— POSIX HPC Extensions (open by handle now in linux kernel)

" File partitioning
— N-N/N-1/N-M writing

File Provenance
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Situation of this work
Related Research at Argonne

Application Note:

" Not trying to create another
high level 1/0O library

" |nstead provide new
foundation for I/O middle
ware and high level 1/0 to

HDF5/NetCDF —

MPI-10/Damaris —

build on
OS/FS —
Container Abstraction PVFS2/Trident Triton
(NoLoSS) PNetCDF / PLFS (ASG)

Model Complexity
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.
Container Abstraction (NoLoSS Project)

" Designed for in-system
storage

" Expects memory mapped
storage hardware.

ComputeNode

Storage
_API

Containgr

" Targets checkpointing,
staging, in-situ analysis
" Currently porting SCR

ComputeNods ComputeNode
= %- " People:

\ — LLNL: Maya Gokhale,
i et Kathryn Mohror, Brian Van
Essen, Adam Moody, Bronis
\ de Supinski
— ANL: Kamil Iskra, Dries

Integrated In-System Storage Architecture for High Performance Computing (ROSS 2012)
Dries Kimpe, Kathryn Mohror, Adam Moody, Brian Van Essen, Maya Gokhale, Rob Ross and Bronis R. de Supinski
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Container Abstraction (NoLoSS Project)

(Continued)

Explicit location (also remote)

More restrictive than POSIX
Drop costly (unused?) features

Restricted model enables some
new features

— Direct Storage Access'
(True zero-copy)

— Space reservation
('= preallocation)

— 3rd party transfers

Status: Early evaluation
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High-Level Data Models over Object Storage

" Investigating object storage as a
more natural fit for high level
libraries

" Objects are independently P n etC D F

accessed byte streams, with

attributes
" Objects grouped into
“containers”, roughly similar to atridentn

traditional “file names”

object API

" Experimenting with modified
versions of PnetCDF and PVFS2
* Early results show complexity

reduction for PnetCDF Modlﬁed
= Explicit control over variable para | |e| FS PVFS?

striping
(downside: explicit control over
variable striping)

Dave Goodell (ANL)
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PLFS on Trident

MPICHZ2 |
ROMIO = Port of PLFS to Trident
’.QDIO Y : ——————— = = Research directions:
iad_bgliiad_nfs} - iad_panfs|

, , ! — Control placement
ad_lustre;{ad_pifs| {ad_pvs2; — Reduce metadata overhead

Y
PLFS Virtual Layer

= Status:
PVFS2 — ad_plfs complete

— Starting work on PLFS port
z i: Iz Shawn Kim (Penn State)
S ] N N [summer internship @ ANL]
i i S - S
=] &= =] =
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Situation of this work
Advanced Storage Group (ASG)

Local Storag

<consistency>
Security > \ <:>
K‘I’riton
(ANL)
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Concept: Friendly
competition in designing
an exascale storage
system

Different design choices,
but shared building
blocks simplifying
exchange (codes, ideas)

Periodical evaluation of
design decisions with
adoption of the best one.
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Triton
Introduction

*  Triton: ANL effort towards = The model presented in this talk is one

development of an exascale

of the models implemented by Triton.

storage system - (key,val), POSIX, variants

= Comparison to T10 OSD:
- Triton is more like PanFS
- Own local storage abstraction

Servers (grey) are Objects (red) are likewise For a replicated object,
arranged in an n- addressed by an ID in this replicas are placed on the
dimensional address space. The primary for an k-1 next closest servers
space and referenced by object is located at the server in the address space.
an |D in that space. with the clesest 1D in the
Here, n=I. address space.
- L .9 ' .9
0 o, Y ™Y 0 ‘l\
] 10 . 10 % [ ] 10 %
/80 / 80 [ 80
30 4 30 4 30 o
%’ s0 w’  s0 S W% so
) _-" _ - .._.-"" ) _'
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= Self-healing, resilient

In the event of a server
failure, the object will be re-
replicated to the next closest
server in the address space.

A
o 10 N
/80

30 ¢
60 '
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ASG Data Model

Overview
Storage System Container Object Fork
Collection of containers Collection of objects Collection of forks Collection of Records
&) A7 A @3 .
© | - @ f
O, L G B ;
\_ V2N N I s
Record: :

record content (array of bytes)

length of the record content (integer)
— version number of the record (integer)
— record key (integer)
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ASG Data Model

Example

/7 Version

" write (loc,cid,oid,fid, 60, 1, 2, “a”)

\

N
L/ v Contents

ldentify fork First record
\

Number of records

record index ‘ = = |60 T ®E = ® = ® ® = ’
record version 2
contents a

Container x, Object y, Fork z
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ASG Data Model

Example

" write (loc,cid,oid,fid, 60, 1, 2, “a”)
= write (loc,cid,oid,fid, 60, 4, 3, “test”)

— Writing 4 records with version number 3

record index ‘ u m | 60| 6l|62 63| m L] L] u L] ] [ ] ] ’

record version 3 3 3 3

contents t e s t

Container x, Object y, Fork z
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ASG Data Model

Example

" write (loc,cid,oid,fid, 60, 1, 2, “a”)
= write (loc,cid,oid,fid, 60, 4, 3, “test”)
= write (loc,cid,oid,fid, 61, 1, 9, “hebe”)

— Writing 1 record of length 4 with version 9

record index ‘ u m | 60| 6l|62 63| m L] L] u L] ] [ ] ] ’

record version 3 9 3 3

contents t |[hebe] s t

Container x, Object y, Fork z
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Data Model: Operations

A limited set of operations:

Write: overwrite one or more records (atomic)

Read: retrieve one or more records (including metadata)
Probe: only retrieve metadata (version and length etc.); No data
Punch: Like write, but writes zero-length records

Reset: Sets the entity back to the default state (i.e. “erase’)
- Note: no 'create' (implementation: no file descriptors)

Write, read and punch support conditional execution based on the expected
version (more about this later).

Client generally provides version number; APl also supports auto increment.
Write, read, punch operate on records

Probe and reset operate on records, forks, objects and containers
Version: Used to order transactions; No retrieval of obsolete versions
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Conditional Operations

" Enables the user to provide a condition on the version of one or
more of the specified records.

" |f the condition is not satisfied, the operation does not retrieve or
update record contents; However, information is returned.
" Currently:

— COND_UNTIL: Transfer (read or write) records as long as the existing
version (if any) is strictly smaller than the specified version.

— COND_ALL: Only transfer data if all existing records in the range have a
version number strictly smaller than the specified version.

Example:
write (..., 60, 3, 2, “abc”) = 0K

60 61 62 60 61 62
N | |
a c
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Conditional Operations

" Enables the user to provide a condition on the version of one or
more of the specified records.

" |f the condition is not satisfied, the operation does not retrieve or
update record contents; However, information is returned.
" Currently:

— COND_UNTIL: Transfer (read or write) records as long as the existing
version (if any) is strictly smaller than the specified version.

— COND_ALL: Only transfer data if all existing records in the range have a
version number strictly smaller than the specified version.

Example:
write (..., 62, 1, 4, “d”") = 0K

60 61 62 60 61 62
2 2 2 2 2 4
a b c a b d
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Conditional Operations

" Enables the user to provide a condition on the version of one or
more of the specified records.

" |f the condition is not satisfied, the operation does not retrieve or
update record contents; However, information is returned.
" Currently:

— COND_UNTIL: Transfer (read or write) records as long as the existing
version (if any) is strictly smaller than the specified version.

— COND_ALL: Only transfer data if all existing records in the range have a
version number strictly smaller than the specified version.

Example:
write (..., 60, 2, 3, “efgh”, COND ALL) = OK

60 61 62 60 61 62
2 2 4 > 3 |3 4
a b d ef gh d
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Conditional Operations

" Enables the user to provide a condition on the version of one or
more of the specified records.

" |f the condition is not satisfied, the operation does not retrieve or
update record contents; However, information is returned.
" Currently:

— COND_UNTIL: Transfer (read or write) records as long as the existing
version (if any) is strictly smaller than the specified version.

— COND_ALL: Only transfer data if all existing records in the range have a
version number strictly smaller than the specified version.

Example:
write (..., 60, 3, 4, “abc”, COND ALL) = ECOND

60 61 62 60 61 62

3 3 4 > 3 3 4

ef gh d Nochange ef gh d
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Example
Synchronization: R-M-W using versioning

" The model does not support locking
— Read and write are atomic
— However: what about Read-Modify-Write?

" Conditional operations can be used to implement R-M-W

1. Read 2. Modify
read(..., COND_NONE) S
G<data, version> > (modify in memoryD
\ ECOND? /
ite ( . 3 OK?
write (..., ,version +
COND_ALL) —> Done!

3. Write
June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France
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Example
Exploiting Object Structure

"= Performance of preliminary implementation is not affected by choice of
fork
" Fork + record can be used as 2-dimensional record space
- Record contents additional dimension (access granularity)
" Example: (key,value) structures

Container
A
- — Records —»= . /{
S A
_Q /
. 5 @
> 2 3T ° °
= oy O 7
5 2 3 -
v 0 9’." -
fork
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Example
Implementing extended attributes and directories

* (key,value) mapping (with key a string) data structure which supports
atomic insert, overwrite, lookup and remove (rename?)

(filename) Preparation: Hash the string key, use as
*hash destination record number.

64 bit number _
Insert: write-conditional with default

version
RMW - Qverwrite: R-M-W
- Remove: R-M-W with empty data
<« [Records —>» - Lookup: unconditional read (is atomic)

© © ©
+ + +
— ) M
Q T E A"
= + © U= :

NS Note: each object can support 264 of

T these data structures!
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Reference Implementation

log

current null
I o _ _}/vn'te
8]
hard 9

fink ~
\\
v T

1-2-3-0-10-1-0
1-2-3-11-0-1-92

1-2-3-5-1- V
,’ A
7

, index

’

information encoded
in file name

* Implements the model
focusing on functionality and
useability, not performance,
resilience or scalability.

 No external dependencies
* Uses underlying FS

- Hardlink support req.

- Write logging

- Uses directory as DB,
filename to encode data

Source: git://git.mcs.anl.gov/asg/reference
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Open Questions
(ongoing work)

Namespaces
— Reddy Narasimha & students (Texas A&M Uni): Legacy support (POSIX)
— Cengiz Karakoyunlu (UConn) summer project @ ANL

Location-Awareness

— Do we need to expose location in the model?
* If not: how do we offer placement control?

Auditing & Security
— Collaboration with Richard Brooks & Jill Gemmill (Clemson)
— Building on LWFS work (validation, simulation)

Provenance
— Bradley Settlemeyer (ORNL)
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More information about Triton:

— Triton: http://trac.mcs.anl.qgov/projects/triton

— Object storage semantics for replicated concurrent-writer file systems
Philip Carns, Robert Ross and Samuel Lang

Questions?
dkimpe@mcs.anl.gov
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