The Triton Data Model

Dries Kimpe, Argonne National Laboratory

Overview

" |ntroduction & Context
— Motivation
— Qverview of research efforts

" Triton Data Model
— Overview & Situation
— Operations
— Examples

"= Conclusion
— Open Questions
— Future work

Note: Early work, things might change! Feedback welcome!

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France

information

Why a hew data model?

zpressiveness of A)PJ ﬁorggﬂex data ’— concurrency aware

i Application Application
r POSIX > :
Croun | 3¢ o |1
e Lyseax

objects, attributes

* Model? (!= API, '=Implementation)

* POSIX I/O API dates from ~1970: Plenty of research above and below POSIX
but relatively little changes to POSIX (POSIX HPC extensions?)

* High-Level Libraries adapt to the application’s data model but are more and more restricted
by the POSIX API.

* The landscape changed: smart (object) distributed storage, application concurrency
(need for scalable synchronization primitives and metadata operations)

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France

Known Problems

Model Issues I ‘ Implementation Issues I

" File locking & synchronization (inter-node synchronization)
— Implementing MPI-IO shared file pointer
— Manipulate meta data in high level I/O data formats (HDF5)

" Mapping application model to the file model (flat file)
— Chunking, space efficiency, unlimited dimensions, ...

" Scalable metadata operations

— Readdir + stat (readdirplus)
— Generic namespace support
— POSIX HPC Extensions (open by handle now in linux kernel)

" File partitioning
— N-N/N-1/N-M writing

File Provenance

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France

Situation of this work
Related Research at Argonne

Application Note:

" Not trying to create another
high level 1/0O library

" |nstead provide new
foundation for I/O middle
ware and high level 1/0 to

HDF5/NetCDF —

MPI-10/Damaris —

build on
OS/FS —
Container Abstraction PVFS2/Trident Triton
(NoLoSS) PNetCDF / PLFS (ASG)

Model Complexity

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France

.
Container Abstraction (NoLoSS Project)

" Designed for in-system
storage

" Expects memory mapped
storage hardware.

ComputeNode

Storage
_API

Containgr

" Targets checkpointing,
staging, in-situ analysis
" Currently porting SCR

ComputeNods ComputeNode
= %- " People:

\ — LLNL: Maya Gokhale,
i et Kathryn Mohror, Brian Van
Essen, Adam Moody, Bronis
\ de Supinski
— ANL: Kamil Iskra, Dries

Integrated In-System Storage Architecture for High Performance Computing (ROSS 2012)
Dries Kimpe, Kathryn Mohror, Adam Moody, Brian Van Essen, Maya Gokhale, Rob Ross and Bronis R. de Supinski

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France

Container Abstraction (NoLoSS Project)

(Continued)

Explicit location (also remote)

More restrictive than POSIX
Drop costly (unused?) features

Restricted model enables some
new features

— Direct Storage Access'
(True zero-copy)

— Space reservation
('= preallocation)

— 3rd party transfers

Status: Early evaluation

1

emor_y-M

Mer

9

Il — — —

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France

metadata

/I

/ ___ Logical View

I

I
Ol [i | |
S ‘ | Container Set |
@ ~ | I
o) \I\ |
E| N I
§| B > |
| | I
8| /I |
— I
I
I

Reserved space
for container set

High-Level Data Models over Object Storage

" Investigating object storage as a
more natural fit for high level
libraries

" Objects are independently P n etC D F

accessed byte streams, with

attributes
" Objects grouped into
“containers”, roughly similar to atridentn

traditional “file names”

object API

" Experimenting with modified
versions of PnetCDF and PVFS2
* Early results show complexity

reduction for PnetCDF Modlﬁed
= Explicit control over variable para | |e| FS PVFS?

striping
(downside: explicit control over
variable striping)

Dave Goodell (ANL)

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France

PLFS on Trident

MPICHZ2 |
ROMIO = Port of PLFS to Trident
’.QDIO Y : ——————— = = Research directions:
iad_bgliiad_nfs} - iad_panfs|

, , ! — Control placement
ad_lustre;{ad_pifs| {ad_pvs2; — Reduce metadata overhead

Y
PLFS Virtual Layer

= Status:
PVFS2 — ad_plfs complete

— Starting work on PLFS port
z i: Iz Shawn Kim (Penn State)
S] N N [summer internship @ ANL]
i i S - S
=] &= =] =

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France

e
! 4

Situation of this work
Advanced Storage Group (ASG)

Local Storag

<consistency>
Security > \ <:>
K‘I’riton
(ANL)

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France

Concept: Friendly
competition in designing
an exascale storage
system

Different design choices,
but shared building
blocks simplifying
exchange (codes, ideas)

Periodical evaluation of
design decisions with
adoption of the best one.

10

Triton
Introduction

* Triton: ANL effort towards = The model presented in this talk is one

development of an exascale

of the models implemented by Triton.

storage system - (key,val), POSIX, variants

= Comparison to T10 OSD:
- Triton is more like PanFS
- Own local storage abstraction

Servers (grey) are Objects (red) are likewise For a replicated object,
arranged in an n- addressed by an ID in this replicas are placed on the
dimensional address space. The primary for an k-1 next closest servers
space and referenced by object is located at the server in the address space.
an |D in that space. with the clesest 1D in the
Here, n=I. address space.
- L .9 ' .9
0 o, Y ™Y 0 ‘l\
] 10 . 10 % [] 10 %
/80 / 80 [80
30 4 30 4 30 o
%’ s0 w’ s0 S W% so
) _-" _ - .._.-"") _'

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France

= Self-healing, resilient

In the event of a server
failure, the object will be re-
replicated to the next closest
server in the address space.

A
o 10 N
/80

30 ¢
60 '

11

ASG Data Model

Overview
Storage System Container Object Fork
Collection of containers Collection of objects Collection of forks Collection of Records
&) A7 A @3 .
© | - @ f
O, L G B ;
_ V2N N I s
Record: :

record content (array of bytes)

length of the record content (integer)
— version number of the record (integer)
— record key (integer)

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France
12

ASG Data Model

Example

/7 Version

" write (loc,cid,oid,fid, 60, 1, 2, “a”)

\

N
L/ v Contents

ldentify fork First record
\

Number of records

record index ‘ = = |60 T ®E = ® = ® ® = ’
record version 2
contents a

Container x, Object y, Fork z

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France

13

ASG Data Model

Example

" write (loc,cid,oid,fid, 60, 1, 2, “a”)
= write (loc,cid,oid,fid, 60, 4, 3, “test”)

— Writing 4 records with version number 3

record index ‘ u m | 60| 6l|62 63| m L] L] u L]] []] ’

record version 3 3 3 3

contents t e s t

Container x, Object y, Fork z

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France

14

ASG Data Model

Example

" write (loc,cid,oid,fid, 60, 1, 2, “a”)
= write (loc,cid,oid,fid, 60, 4, 3, “test”)
= write (loc,cid,oid,fid, 61, 1, 9, “hebe”)

— Writing 1 record of length 4 with version 9

record index ‘ u m | 60| 6l|62 63| m L] L] u L]] []] ’

record version 3 9 3 3

contents t |[hebe] s t

Container x, Object y, Fork z

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France

15

Data Model: Operations

A limited set of operations:

Write: overwrite one or more records (atomic)

Read: retrieve one or more records (including metadata)
Probe: only retrieve metadata (version and length etc.); No data
Punch: Like write, but writes zero-length records

Reset: Sets the entity back to the default state (i.e. “erase’)
- Note: no 'create' (implementation: no file descriptors)

Write, read and punch support conditional execution based on the expected
version (more about this later).

Client generally provides version number; APl also supports auto increment.
Write, read, punch operate on records

Probe and reset operate on records, forks, objects and containers
Version: Used to order transactions; No retrieval of obsolete versions

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France

16

Conditional Operations

" Enables the user to provide a condition on the version of one or
more of the specified records.

" |f the condition is not satisfied, the operation does not retrieve or
update record contents; However, information is returned.
" Currently:

— COND_UNTIL: Transfer (read or write) records as long as the existing
version (if any) is strictly smaller than the specified version.

— COND_ALL: Only transfer data if all existing records in the range have a
version number strictly smaller than the specified version.

Example:
write (..., 60, 3, 2, “abc”) = 0K

60 61 62 60 61 62
N | |
a c

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France
17

Conditional Operations

" Enables the user to provide a condition on the version of one or
more of the specified records.

" |f the condition is not satisfied, the operation does not retrieve or
update record contents; However, information is returned.
" Currently:

— COND_UNTIL: Transfer (read or write) records as long as the existing
version (if any) is strictly smaller than the specified version.

— COND_ALL: Only transfer data if all existing records in the range have a
version number strictly smaller than the specified version.

Example:
write (..., 62, 1, 4, “d”") = 0K

60 61 62 60 61 62
2 2 2 2 2 4
a b c a b d

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France
18

Conditional Operations

" Enables the user to provide a condition on the version of one or
more of the specified records.

" |f the condition is not satisfied, the operation does not retrieve or
update record contents; However, information is returned.
" Currently:

— COND_UNTIL: Transfer (read or write) records as long as the existing
version (if any) is strictly smaller than the specified version.

— COND_ALL: Only transfer data if all existing records in the range have a
version number strictly smaller than the specified version.

Example:
write (..., 60, 2, 3, “efgh”, COND ALL) = OK

60 61 62 60 61 62
2 2 4 > 3 |3 4
a b d ef gh d

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France
19

Conditional Operations

" Enables the user to provide a condition on the version of one or
more of the specified records.

" |f the condition is not satisfied, the operation does not retrieve or
update record contents; However, information is returned.
" Currently:

— COND_UNTIL: Transfer (read or write) records as long as the existing
version (if any) is strictly smaller than the specified version.

— COND_ALL: Only transfer data if all existing records in the range have a
version number strictly smaller than the specified version.

Example:
write (..., 60, 3, 4, “abc”, COND ALL) = ECOND

60 61 62 60 61 62

3 3 4 > 3 3 4

ef gh d Nochange ef gh d

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France
20

Example
Synchronization: R-M-W using versioning

" The model does not support locking
— Read and write are atomic
— However: what about Read-Modify-Write?

" Conditional operations can be used to implement R-M-W

1. Read 2. Modify
read(..., COND_NONE) S
G<data, version> > (modify in memoryD
\ ECOND? /
ite (. 3 OK?
write (..., ,version +
COND_ALL) —> Done!

3. Write
June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France

21

Example
Exploiting Object Structure

"= Performance of preliminary implementation is not affected by choice of
fork
" Fork + record can be used as 2-dimensional record space
- Record contents additional dimension (access granularity)
" Example: (key,value) structures

Container
A
- — Records —»= . /{
S A
_Q /
. 5 @
> 2 3T ° °
= oy O 7
5 2 3 -
v 0 9’." -
fork

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France

22

Example
Implementing extended attributes and directories

* (key,value) mapping (with key a string) data structure which supports
atomic insert, overwrite, lookup and remove (rename?)

(filename) Preparation: Hash the string key, use as
*hash destination record number.

64 bit number _
Insert: write-conditional with default

version
RMW - Qverwrite: R-M-W
- Remove: R-M-W with empty data
<« [Records —>» - Lookup: unconditional read (is atomic)

© © ©
+ + +
—) M
Q T E A"
= + © U= :

NS Note: each object can support 264 of

T these data structures!

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France
23

Reference Implementation

log

current null
I o _ _}/vn'te
8]
hard 9

fink ~
\\
v T

1-2-3-0-10-1-0
1-2-3-11-0-1-92

1-2-3-5-1- V
,’ A
7

, index

’

information encoded
in file name

* Implements the model
focusing on functionality and
useability, not performance,
resilience or scalability.

 No external dependencies
* Uses underlying FS

- Hardlink support req.

- Write logging

- Uses directory as DB,
filename to encode data

Source: git://git.mcs.anl.gov/asg/reference

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France

24

Open Questions
(ongoing work)

Namespaces
— Reddy Narasimha & students (Texas A&M Uni): Legacy support (POSIX)
— Cengiz Karakoyunlu (UConn) summer project @ ANL

Location-Awareness

— Do we need to expose location in the model?
* If not: how do we offer placement control?

Auditing & Security
— Collaboration with Richard Brooks & Jill Gemmill (Clemson)
— Building on LWFS work (validation, simulation)

Provenance
— Bradley Settlemeyer (ORNL)

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France

25

Acknowledgements

Team at Argonne
— Phil Carns, Dave Goodell, Kevin Harms, Dries Kimpe, Rob Ross, Justin Wozniak

Collaborators (ASG)
— ORNL: Stephen Poole, Bradley Settlemeyer
— SNL: Lee Ward, Matthew Curry, Ruth Klundt
— Clemson: Jill Gemmil, Richard Brooks, Haiying Shen
— UAB: Anthony Skjellum, Matthew Farmer
... and people | forgot to mention here!

More information about Triton:

— Triton: http://trac.mcs.anl.qgov/projects/triton

— Object storage semantics for replicated concurrent-writer file systems
Philip Carns, Robert Ross and Samuel Lang

Questions?
dkimpe@mcs.anl.gov

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France

26

http://trac.mcs.anl.gov/projects/triton
mailto:dkimpe@mcs.anl.gov

