
The Triton Data Model

Dries Kimpe, Argonne National Laboratory

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France

2

Overview

 Introduction & Context
– Motivation
– Overview of research efforts

 Triton Data Model
– Overview & Situation
– Operations
– Examples

 Conclusion
– Open Questions
– Future work

Note: Early work, things might change! Feedback welcome!

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France

3

Why a new data model?

 Model? (!= API, != Implementation)
 POSIX I/O API dates from ~1970: Plenty of research above and below POSIX

but relatively little changes to POSIX (POSIX HPC extensions?)
 High-Level Libraries adapt to the application’s data model but are more and more restricted

by the POSIX API.
 The landscape changed: smart (object) distributed storage, application concurrency

(need for scalable synchronization primitives and metadata operations)

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France

4

Known Problems

 File locking & synchronization (inter-node synchronization)
– Implementing MPI-IO shared file pointer
– Manipulate meta data in high level I/O data formats (HDF5)

 Mapping application model to the file model (flat file)
– Chunking, space efficiency, unlimited dimensions, ...

 Scalable metadata operations

– Readdir + stat (readdirplus)
– Generic namespace support
– POSIX HPC Extensions (open by handle now in linux kernel)

 File partitioning
– N-N / N-1 / N-M writing

 File Provenance

Model IssuesModel Issues Implementation IssuesImplementation Issues

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France

5

Situation of this work
Related Research at Argonne

Note:
 Not trying to create another

high level I/O library
 Instead provide new

foundation for I/O middle
ware and high level I/O to
build on

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France

6

Container Abstraction (NoLoSS Project)

 Designed for in-system
storage

 Expects memory mapped
storage hardware.

 Targets checkpointing,
staging, in-situ analysis

 Currently porting SCR

 People:
– LLNL: Maya Gokhale,

Kathryn Mohror, Brian Van
Essen, Adam Moody, Bronis
de Supinski

– ANL: Kamil Iskra, Dries
Kimpe, Rob Ross

Integrated In-System Storage Architecture for High Performance Computing (ROSS 2012)
Dries Kimpe, Kathryn Mohror, Adam Moody, Brian Van Essen, Maya Gokhale, Rob Ross and Bronis R. de Supinski

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France

7

Container Abstraction (NoLoSS Project)
(Continued)

 Explicit location (also remote)

 More restrictive than POSIX
Drop costly (unused?) features

 Restricted model enables some
new features
– `Direct Storage Access'

(True zero-copy)
– Space reservation

(!= preallocation)
– 3rd party transfers

 Status: Early evaluation

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France

8

High-Level Data Models over Object Storage

 Investigating object storage as a
more natural fit for high level
libraries

 Objects are independently
accessed byte streams, with
attributes

 Objects grouped into
“containers”, roughly similar to
traditional “file names”

 Experimenting with modified
versions of PnetCDF and PVFS2
 Early results show complexity

reduction for PnetCDF
 Explicit control over variable

striping
(downside: explicit control over
variable striping)

Dave Goodell (ANL)

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France

9

PLFS on Trident

 Port of PLFS to Trident

 Research directions:
– Control placement
– Reduce metadata overhead

 Status:
– ad_plfs complete
– Starting work on PLFS port

 Shawn Kim (Penn State)
[summer internship @ ANL]

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France

10

Situation of this work
Advanced Storage Group (ASG)

 Concept: Friendly
competition in designing
an exascale storage
system

 Different design choices,
but shared building
blocks simplifying
exchange (codes, ideas)

 Periodical evaluation of
design decisions with
adoption of the best one.

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France

11

Triton
Introduction
 Triton: ANL effort towards

development of an exascale
storage system

 Comparison to T10 OSD:
– Triton is more like PanFS
– Own local storage abstraction

 The model presented in this talk is one
of the models implemented by Triton.

– (key,val), POSIX, variants
 Self-healing, resilient

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France

12

ASG Data Model
Overview

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France

13

ASG Data Model
Example

 write (loc,cid,oid,fid, 60, 1, 2, “a”)

Identify fork First record

Number of records

Version

Contents

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France

14

ASG Data Model
Example

 write (loc,cid,oid,fid, 60, 1, 2, “a”)
 write (loc,cid,oid,fid, 60, 4, 3, “test”)

– Writing 4 records with version number 3

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France

15

ASG Data Model
Example

 write (loc,cid,oid,fid, 60, 1, 2, “a”)
 write (loc,cid,oid,fid, 60, 4, 3, “test”)
 write (loc,cid,oid,fid, 61, 1, 9, “hebe”)

– Writing 1 record of length 4 with version 9

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France

16

Data Model: Operations

A limited set of operations:

 Write: overwrite one or more records (atomic)
 Read: retrieve one or more records (including metadata)
 Probe: only retrieve metadata (version and length etc.); No data
 Punch: Like write, but writes zero-length records

 Reset: Sets the entity back to the default state (i.e. `erase’)
– Note: no 'create' (implementation: no file descriptors)

 Write, read and punch support conditional execution based on the expected
version (more about this later).

 Client generally provides version number; API also supports auto increment.
 Write, read, punch operate on records
 Probe and reset operate on records, forks, objects and containers
 Version: Used to order transactions; No retrieval of obsolete versions

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France

17

Conditional Operations

 Enables the user to provide a condition on the version of one or
more of the specified records.

 If the condition is not satisfied, the operation does not retrieve or
update record contents; However, information is returned.

 Currently:
– COND_UNTIL: Transfer (read or write) records as long as the existing

version (if any) is strictly smaller than the specified version.
– COND_ALL: Only transfer data if all existing records in the range have a

version number strictly smaller than the specified version.

Example:
write (..., 60, 3, 2, “abc”) = OK

60 61 62

2 2 2

a b c

60 61 62

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France

18

Conditional Operations

 Enables the user to provide a condition on the version of one or
more of the specified records.

 If the condition is not satisfied, the operation does not retrieve or
update record contents; However, information is returned.

 Currently:
– COND_UNTIL: Transfer (read or write) records as long as the existing

version (if any) is strictly smaller than the specified version.
– COND_ALL: Only transfer data if all existing records in the range have a

version number strictly smaller than the specified version.

Example:
write (..., 62, 1, 4, “d”) = OK

60 61 62

2 2 4

a b d

60 61 62

2 2 2

a b c

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France

19

Conditional Operations

 Enables the user to provide a condition on the version of one or
more of the specified records.

 If the condition is not satisfied, the operation does not retrieve or
update record contents; However, information is returned.

 Currently:
– COND_UNTIL: Transfer (read or write) records as long as the existing

version (if any) is strictly smaller than the specified version.
– COND_ALL: Only transfer data if all existing records in the range have a

version number strictly smaller than the specified version.

Example:
write (..., 60, 2, 3, “efgh”, COND_ALL) = OK

60 61 62

3 3 4

ef gh d

60 61 62

2 2 4

a b d

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France

20

Conditional Operations

 Enables the user to provide a condition on the version of one or
more of the specified records.

 If the condition is not satisfied, the operation does not retrieve or
update record contents; However, information is returned.

 Currently:
– COND_UNTIL: Transfer (read or write) records as long as the existing

version (if any) is strictly smaller than the specified version.
– COND_ALL: Only transfer data if all existing records in the range have a

version number strictly smaller than the specified version.

Example:
write (..., 60, 3, 4, “abc”, COND_ALL) = ECOND

60 61 62

3 3 4

ef gh d

60 61 62

3 3 4

ef gh d No change

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France

21

Example
Synchronization: R-M-W using versioning

 The model does not support locking
– Read and write are atomic
– However: what about Read-Modify-Write?

 Conditional operations can be used to implement R-M-W

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France

22

Example
Exploiting Object Structure

 Performance of preliminary implementation is not affected by choice of
fork

 Fork + record can be used as 2-dimensional record space
– Record contents additional dimension (access granularity)

 Example: (key,value) structures

fork

ob
je

ct

re
co

rd

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France

23

Example
Implementing extended attributes and directories

● (key,value) mapping (with key a string) data structure which supports
atomic insert, overwrite, lookup and remove (rename?)

Preparation: Hash the string key, use as
destination record number.

• Insert: write-conditional with default
version

• Overwrite: R-M-W
• Remove: R-M-W with empty data
• Lookup: unconditional read (is atomic)

Note: each object can support 2^64 of
these data structures!

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France

24

Reference Implementation

● Implements the model
focusing on functionality and
useability, not performance,
resilience or scalability.

● No external dependencies

● Uses underlying FS

– Hardlink support req.
– Write logging
– Uses directory as DB,

filename to encode data

Source: git://git.mcs.anl.gov/asg/reference

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France

25

Open Questions
(ongoing work)

 Namespaces
– Reddy Narasimha & students (Texas A&M Uni): Legacy support (POSIX)
– Cengiz Karakoyunlu (UConn) summer project @ ANL

 Location-Awareness
– Do we need to expose location in the model?

● If not: how do we offer placement control?

 Auditing & Security
– Collaboration with Richard Brooks & Jill Gemmill (Clemson)
– Building on LWFS work (validation, simulation)

 Provenance
– Bradley Settlemeyer (ORNL)

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France

26

Acknowledgements

 Team at Argonne
– Phil Carns, Dave Goodell, Kevin Harms, Dries Kimpe, Rob Ross, Justin Wozniak

 Collaborators (ASG)
– ORNL: Stephen Poole, Bradley Settlemeyer
– SNL: Lee Ward, Matthew Curry, Ruth Klundt
– Clemson: Jill Gemmil, Richard Brooks, Haiying Shen
– UAB: Anthony Skjellum, Matthew Farmer

… and people I forgot to mention here!

 More information about Triton:
– Triton: http://trac.mcs.anl.gov/projects/triton
– Object storage semantics for replicated concurrent-writer file systems

Philip Carns, Robert Ross and Samuel Lang

 Questions?
dkimpe@mcs.anl.gov

http://trac.mcs.anl.gov/projects/triton
mailto:dkimpe@mcs.anl.gov

