
The Triton Data Model

Dries Kimpe, Argonne National Laboratory

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France

2

Overview

 Introduction & Context
– Motivation
– Overview of research efforts

 Triton Data Model
– Overview & Situation
– Operations
– Examples

 Conclusion
– Open Questions
– Future work

Note: Early work, things might change! Feedback welcome!

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France

3

Why a new data model?

 Model? (!= API, != Implementation)
 POSIX I/O API dates from ~1970: Plenty of research above and below POSIX

but relatively little changes to POSIX (POSIX HPC extensions?)
 High-Level Libraries adapt to the application’s data model but are more and more restricted

by the POSIX API.
 The landscape changed: smart (object) distributed storage, application concurrency

(need for scalable synchronization primitives and metadata operations)

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France

4

Known Problems

 File locking & synchronization (inter-node synchronization)
– Implementing MPI-IO shared file pointer
– Manipulate meta data in high level I/O data formats (HDF5)

 Mapping application model to the file model (flat file)
– Chunking, space efficiency, unlimited dimensions, ...

 Scalable metadata operations

– Readdir + stat (readdirplus)
– Generic namespace support
– POSIX HPC Extensions (open by handle now in linux kernel)

 File partitioning
– N-N / N-1 / N-M writing

 File Provenance

Model IssuesModel Issues Implementation IssuesImplementation Issues

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France

5

Situation of this work
Related Research at Argonne

Note:
 Not trying to create another

high level I/O library
 Instead provide new

foundation for I/O middle
ware and high level I/O to
build on

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France

6

Container Abstraction (NoLoSS Project)

 Designed for in-system
storage

 Expects memory mapped
storage hardware.

 Targets checkpointing,
staging, in-situ analysis

 Currently porting SCR

 People:
– LLNL: Maya Gokhale,

Kathryn Mohror, Brian Van
Essen, Adam Moody, Bronis
de Supinski

– ANL: Kamil Iskra, Dries
Kimpe, Rob Ross

Integrated In-System Storage Architecture for High Performance Computing (ROSS 2012)
Dries Kimpe, Kathryn Mohror, Adam Moody, Brian Van Essen, Maya Gokhale, Rob Ross and Bronis R. de Supinski

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France

7

Container Abstraction (NoLoSS Project)
(Continued)

 Explicit location (also remote)

 More restrictive than POSIX
Drop costly (unused?) features

 Restricted model enables some
new features
– `Direct Storage Access'

(True zero-copy)
– Space reservation

(!= preallocation)
– 3rd party transfers

 Status: Early evaluation

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France

8

High-Level Data Models over Object Storage

 Investigating object storage as a
more natural fit for high level
libraries

 Objects are independently
accessed byte streams, with
attributes

 Objects grouped into
“containers”, roughly similar to
traditional “file names”

 Experimenting with modified
versions of PnetCDF and PVFS2
 Early results show complexity

reduction for PnetCDF
 Explicit control over variable

striping
(downside: explicit control over
variable striping)

Dave Goodell (ANL)

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France

9

PLFS on Trident

 Port of PLFS to Trident

 Research directions:
– Control placement
– Reduce metadata overhead

 Status:
– ad_plfs complete
– Starting work on PLFS port

 Shawn Kim (Penn State)
[summer internship @ ANL]

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France

10

Situation of this work
Advanced Storage Group (ASG)

 Concept: Friendly
competition in designing
an exascale storage
system

 Different design choices,
but shared building
blocks simplifying
exchange (codes, ideas)

 Periodical evaluation of
design decisions with
adoption of the best one.

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France

11

Triton
Introduction
 Triton: ANL effort towards

development of an exascale
storage system

 Comparison to T10 OSD:
– Triton is more like PanFS
– Own local storage abstraction

 The model presented in this talk is one
of the models implemented by Triton.

– (key,val), POSIX, variants
 Self-healing, resilient

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France

12

ASG Data Model
Overview

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France

13

ASG Data Model
Example

 write (loc,cid,oid,fid, 60, 1, 2, “a”)

Identify fork First record

Number of records

Version

Contents

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France

14

ASG Data Model
Example

 write (loc,cid,oid,fid, 60, 1, 2, “a”)
 write (loc,cid,oid,fid, 60, 4, 3, “test”)

– Writing 4 records with version number 3

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France

15

ASG Data Model
Example

 write (loc,cid,oid,fid, 60, 1, 2, “a”)
 write (loc,cid,oid,fid, 60, 4, 3, “test”)
 write (loc,cid,oid,fid, 61, 1, 9, “hebe”)

– Writing 1 record of length 4 with version 9

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France

16

Data Model: Operations

A limited set of operations:

 Write: overwrite one or more records (atomic)
 Read: retrieve one or more records (including metadata)
 Probe: only retrieve metadata (version and length etc.); No data
 Punch: Like write, but writes zero-length records

 Reset: Sets the entity back to the default state (i.e. `erase’)
– Note: no 'create' (implementation: no file descriptors)

 Write, read and punch support conditional execution based on the expected
version (more about this later).

 Client generally provides version number; API also supports auto increment.
 Write, read, punch operate on records
 Probe and reset operate on records, forks, objects and containers
 Version: Used to order transactions; No retrieval of obsolete versions

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France

17

Conditional Operations

 Enables the user to provide a condition on the version of one or
more of the specified records.

 If the condition is not satisfied, the operation does not retrieve or
update record contents; However, information is returned.

 Currently:
– COND_UNTIL: Transfer (read or write) records as long as the existing

version (if any) is strictly smaller than the specified version.
– COND_ALL: Only transfer data if all existing records in the range have a

version number strictly smaller than the specified version.

Example:
write (..., 60, 3, 2, “abc”) = OK

60 61 62

2 2 2

a b c

60 61 62

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France

18

Conditional Operations

 Enables the user to provide a condition on the version of one or
more of the specified records.

 If the condition is not satisfied, the operation does not retrieve or
update record contents; However, information is returned.

 Currently:
– COND_UNTIL: Transfer (read or write) records as long as the existing

version (if any) is strictly smaller than the specified version.
– COND_ALL: Only transfer data if all existing records in the range have a

version number strictly smaller than the specified version.

Example:
write (..., 62, 1, 4, “d”) = OK

60 61 62

2 2 4

a b d

60 61 62

2 2 2

a b c

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France

19

Conditional Operations

 Enables the user to provide a condition on the version of one or
more of the specified records.

 If the condition is not satisfied, the operation does not retrieve or
update record contents; However, information is returned.

 Currently:
– COND_UNTIL: Transfer (read or write) records as long as the existing

version (if any) is strictly smaller than the specified version.
– COND_ALL: Only transfer data if all existing records in the range have a

version number strictly smaller than the specified version.

Example:
write (..., 60, 2, 3, “efgh”, COND_ALL) = OK

60 61 62

3 3 4

ef gh d

60 61 62

2 2 4

a b d

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France

20

Conditional Operations

 Enables the user to provide a condition on the version of one or
more of the specified records.

 If the condition is not satisfied, the operation does not retrieve or
update record contents; However, information is returned.

 Currently:
– COND_UNTIL: Transfer (read or write) records as long as the existing

version (if any) is strictly smaller than the specified version.
– COND_ALL: Only transfer data if all existing records in the range have a

version number strictly smaller than the specified version.

Example:
write (..., 60, 3, 4, “abc”, COND_ALL) = ECOND

60 61 62

3 3 4

ef gh d

60 61 62

3 3 4

ef gh d No change

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France

21

Example
Synchronization: R-M-W using versioning

 The model does not support locking
– Read and write are atomic
– However: what about Read-Modify-Write?

 Conditional operations can be used to implement R-M-W

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France

22

Example
Exploiting Object Structure

 Performance of preliminary implementation is not affected by choice of
fork

 Fork + record can be used as 2-dimensional record space
– Record contents additional dimension (access granularity)

 Example: (key,value) structures

fork

ob
je

ct

re
co

rd

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France

23

Example
Implementing extended attributes and directories

● (key,value) mapping (with key a string) data structure which supports
atomic insert, overwrite, lookup and remove (rename?)

Preparation: Hash the string key, use as
destination record number.

• Insert: write-conditional with default
version

• Overwrite: R-M-W
• Remove: R-M-W with empty data
• Lookup: unconditional read (is atomic)

Note: each object can support 2^64 of
these data structures!

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France

24

Reference Implementation

● Implements the model
focusing on functionality and
useability, not performance,
resilience or scalability.

● No external dependencies

● Uses underlying FS

– Hardlink support req.
– Write logging
– Uses directory as DB,

filename to encode data

Source: git://git.mcs.anl.gov/asg/reference

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France

25

Open Questions
(ongoing work)

 Namespaces
– Reddy Narasimha & students (Texas A&M Uni): Legacy support (POSIX)
– Cengiz Karakoyunlu (UConn) summer project @ ANL

 Location-Awareness
– Do we need to expose location in the model?

● If not: how do we offer placement control?

 Auditing & Security
– Collaboration with Richard Brooks & Jill Gemmill (Clemson)
– Building on LWFS work (validation, simulation)

 Provenance
– Bradley Settlemeyer (ORNL)

June 13, 2012 - INRIA-Illinois-ANL Workshop @ Rennes, France

26

Acknowledgements

 Team at Argonne
– Phil Carns, Dave Goodell, Kevin Harms, Dries Kimpe, Rob Ross, Justin Wozniak

 Collaborators (ASG)
– ORNL: Stephen Poole, Bradley Settlemeyer
– SNL: Lee Ward, Matthew Curry, Ruth Klundt
– Clemson: Jill Gemmil, Richard Brooks, Haiying Shen
– UAB: Anthony Skjellum, Matthew Farmer

… and people I forgot to mention here!

 More information about Triton:
– Triton: http://trac.mcs.anl.gov/projects/triton
– Object storage semantics for replicated concurrent-writer file systems

Philip Carns, Robert Ross and Samuel Lang

 Questions?
dkimpe@mcs.anl.gov

http://trac.mcs.anl.gov/projects/triton
mailto:dkimpe@mcs.anl.gov

