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A Trend: Many-Core Chips

 Integrates many loosely-coupled processors on a single chip

➔ High-performance Network on Chip (NoC)

➔ Hundreds to thousands of small cores

 The main solution to keep increasing the number of flops per 
watt provided by a single chip [Borkar, 2007]

➔ Needed to reach ExaScale
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Scalability Issue in the Shared Memory Model

 Hardware cache coherence introduces high overhead at large 
scale [Mattson, 2010]

 2 main alternatives:

➔ Managing data coherence in software

➔ Adopting the message passing model

➔ The Intel SCC (Single-Chip Cloud Computing)
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The Intel SCC: A Message-Passing Many-core

 Specification (features of interest for this talk):

➔ 48 general-purpose x86 processors (Pentium-1)

➔ 24 tiles (2 cores per tile)
➔ A 2D-Mesh Network-on-Chip (6x4)

➔ No cache coherence

➔ Fast on-chip memory buffers for message passing between cores

 Can be viewed as a distributed system.

➔ One process per core

➔ Legacy SPMD codes can be run easily

➔ A MPI-like interface is easy to provide
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Goal

 An efficient communication library for the Intel SCC

➔ Studying the communication mechanisms

➔ Interface: MPI

 Leveraging the on-chip memory

➔ Message Passing Buffers (distributed on the tiles) 

➔ Accessible by all cores

➔ Remote Memory Access (RMA)

➔ One-sided put/get interface
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Related Work

 Point-to-point communications are well studied

➔ RCCE

➔ One-sided put/get interface using the MPBs.
➔ Two-sided send/recv interface.

➔ On top of the one-sided interface
➔ Only accessible interface by default

➔ iRCCE

➔ Provides non blocking primitives
➔ Improves performance using double-buffering

➔ RCKMPI

➔ Provides multiple solutions based on the message size
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Related Work: Collectives

 2 interfaces:

➔ RCCE_comm (MPI-Like)

➔ Built on top of RCCE send/recv interface

➔ RCKMPI

➔ Adding a SCC channel to MPICH2
➔ Send/recv based on RMA to the MPBs
➔ Collectives built on top of the send/recv interface
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Outline

 Detailed description of the SCC

➔ Opportunities to get more parallelism

 Description of OC-Bcast

➔ RMA-based broascast algorithm

➔ Pipelined k-ary  tree

 Evaluation of the proposed solution

➔ Analytical and experimental

➔ 27% lower latency and 3 times higher peak throughput

 On-going work 
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Description of the Intel SCC: 2 Cores per Tile

 MPB accessible by all cores
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A 2D Mesh
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A 2D mesh: X-Y routing
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Remote Read/Write to MPBs
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Contention On Concurrent Get to one MPB (128 CL)

 Observable contention from 40 parallel Gets

➔ All cores are not equally impacted

➔ The slowest core is 2 times slower 



14

Contention On Concurrent Put to one MPB (1 CL)

 Observable contention from 32 parallel Puts

➔ All cores are not equally impacted

➔ The slowest core is more than 4 times slower 
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Our Broadcast Algorithm

 Goal: Taking advantage of RMA to the MPBs

➔ Fast data movements (but limited size)

➔ Parallel accesses

 OC-Bcast

➔ K-ary tree

➔ Pipelining

➔ Double-Buffering

➔ Based on RCCE Put/Get interface
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Additional Optimizations

 Binary notification tree:

➔ K children are notified of a new chunk

➔ Put is used: sequential
➔ A binary tree is build between the k children to increase the 

parallelism

 Double buffering (proposed in iRCCE):

➔ The MPB is divided into two buffer.

➔ The sender can put a new chunk in its MPB while the receivers are 
getting the previous one.
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Evaluation

 Comparison with RCCE_comm

➔ Provides better performance than RCKMPI

➔ Broadcast algorithms based on the send/recv interface

 Small messages

➔ Binomial Tree

 Large messages

➔ Scatter-Allgather

➔ Allgather based on Bruck,1997

 Trees built based on process ids
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Latency (Memory to Memory)

 OC-Bcast outperforms the binomial tree

 Contention is visible for k=47
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Throughput (Memory to Memory)

 3 times better performance (61% of max theoretical throughput)

 Lower values of k provide better pipelining
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Analytical Evaluation

 SCC communication model (LogP based model)

 Performance improvements are a direct consequence of 
implementing collectives on top of one-sided operations:

➔ Latency (one chunk)

➔ OC-Bcast: 2 off-chip memory accesses on the critical path

➔ Binomial: 3.log2P off-chip memory accesses

➔ Throughput (one chunk)

➔ 3 times less write accesses to off-chip memory with OC-Bcast
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Summary

 The Intel SCC provides efficient RMA to on-chip MPB for fast 
communication

 Study of collective operations

➔ OC-Bcast

➔ Pipelined k-ary tree
➔ Takes into account contention issues

➔ At least 27% lower latency
➔ 3 times better throughput

 Building collectives on top of on-chip one-sided operations can 
help improving performance of collective operations on many-
core chips

➔ Confirmed by the analytical study

 High-Performance RMA-Based Broadcast on the Intel SCC, 
SPAA, 2012.
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New results: Asynchronous broadcast

 Leveraging parallel interrupts for collective operations

➔ System level services

➔ Many-core OS

 Broadcast based on parallel interrupts

➔ A userspace library to manipulate parallel interrupts

➔ An asynchronous version of OC-Bcast

➔ Low single broadcast latency

➔ Efficient handling of concurrent broadcasts

➔ 68% of maximum theoretical bandwidth
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Ongoing Work

 Efficient communication library for the Intel SCC

➔ Study of other collectives

 Implementation of concurrent data structure on many-cores 
processors

➔ Shared vs replicated data structure

➔ Each process has a copy of the data structure in its private 
memory

➔ The data structure is stored in shared memory
➔ Implementation of atomic broadcast
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