
1

Towards Efficient Collective Operations
on the Intel SCC

Darko Petrović, Omid Shahmirzadi, Thomas Ropars, André Schiper

Distributed Systems Laboratory

2

A Trend: Many-Core Chips

 Integrates many loosely-coupled processors on a single chip

➔ High-performance Network on Chip (NoC)

➔ Hundreds to thousands of small cores

 The main solution to keep increasing the number of flops per
watt provided by a single chip [Borkar, 2007]

➔ Needed to reach ExaScale

3

Scalability Issue in the Shared Memory Model

 Hardware cache coherence introduces high overhead at large
scale [Mattson, 2010]

 2 main alternatives:

➔ Managing data coherence in software

➔ Adopting the message passing model

➔ The Intel SCC (Single-Chip Cloud Computing)

4

The Intel SCC: A Message-Passing Many-core

 Specification (features of interest for this talk):

➔ 48 general-purpose x86 processors (Pentium-1)

➔ 24 tiles (2 cores per tile)
➔ A 2D-Mesh Network-on-Chip (6x4)

➔ No cache coherence

➔ Fast on-chip memory buffers for message passing between cores

 Can be viewed as a distributed system.

➔ One process per core

➔ Legacy SPMD codes can be run easily

➔ A MPI-like interface is easy to provide

5

Goal

 An efficient communication library for the Intel SCC

➔ Studying the communication mechanisms

➔ Interface: MPI

 Leveraging the on-chip memory

➔ Message Passing Buffers (distributed on the tiles)

➔ Accessible by all cores

➔ Remote Memory Access (RMA)

➔ One-sided put/get interface

6

Related Work

 Point-to-point communications are well studied

➔ RCCE

➔ One-sided put/get interface using the MPBs.
➔ Two-sided send/recv interface.

➔ On top of the one-sided interface
➔ Only accessible interface by default

➔ iRCCE

➔ Provides non blocking primitives
➔ Improves performance using double-buffering

➔ RCKMPI

➔ Provides multiple solutions based on the message size

7

Related Work: Collectives

 2 interfaces:

➔ RCCE_comm (MPI-Like)

➔ Built on top of RCCE send/recv interface

➔ RCKMPI

➔ Adding a SCC channel to MPICH2
➔ Send/recv based on RMA to the MPBs
➔ Collectives built on top of the send/recv interface

8

Outline

 Detailed description of the SCC

➔ Opportunities to get more parallelism

 Description of OC-Bcast

➔ RMA-based broascast algorithm

➔ Pipelined k-ary tree

 Evaluation of the proposed solution

➔ Analytical and experimental

➔ 27% lower latency and 3 times higher peak throughput

 On-going work

9

Description of the Intel SCC: 2 Cores per Tile

 MPB accessible by all cores

10

A 2D Mesh

11

A 2D mesh: X-Y routing

12

Remote Read/Write to MPBs

13

Contention On Concurrent Get to one MPB (128 CL)

 Observable contention from 40 parallel Gets

➔ All cores are not equally impacted

➔ The slowest core is 2 times slower

14

Contention On Concurrent Put to one MPB (1 CL)

 Observable contention from 32 parallel Puts

➔ All cores are not equally impacted

➔ The slowest core is more than 4 times slower

15

Our Broadcast Algorithm

 Goal: Taking advantage of RMA to the MPBs

➔ Fast data movements (but limited size)

➔ Parallel accesses

 OC-Bcast

➔ K-ary tree

➔ Pipelining

➔ Double-Buffering

➔ Based on RCCE Put/Get interface

16

GET
GET

G
ET

G
E

T

G
E

T G
E

T

G
E

T

G
E

T

PUT NOTIF
PUT
NOTIFPUT ACK PUT

ACK

PU
T

A
C

K

PU
T

A
C

K

P
U

T
 A

C
K

P
U

T
 A

C
K

PU
T

N
O

TI
F

P
U

T
 N

O
T

IF

P
U

T
 N

O
T

IF PU
T

N
O

TI
F

P
U

T
 N

O
T

IF

P
U

T
 N

O
T

IF

P
U

T
 N

O
T

F

P
U

T
 N

O
T

IF
OC-Bcast (3-ary tree)

17

Additional Optimizations

 Binary notification tree:

➔ K children are notified of a new chunk

➔ Put is used: sequential
➔ A binary tree is build between the k children to increase the

parallelism

 Double buffering (proposed in iRCCE):

➔ The MPB is divided into two buffer.

➔ The sender can put a new chunk in its MPB while the receivers are
getting the previous one.

18

Evaluation

 Comparison with RCCE_comm

➔ Provides better performance than RCKMPI

➔ Broadcast algorithms based on the send/recv interface

 Small messages

➔ Binomial Tree

 Large messages

➔ Scatter-Allgather

➔ Allgather based on Bruck,1997

 Trees built based on process ids

19

Latency (Memory to Memory)

 OC-Bcast outperforms the binomial tree

 Contention is visible for k=47

20

Throughput (Memory to Memory)

 3 times better performance (61% of max theoretical throughput)

 Lower values of k provide better pipelining

21

Analytical Evaluation

 SCC communication model (LogP based model)

 Performance improvements are a direct consequence of
implementing collectives on top of one-sided operations:

➔ Latency (one chunk)

➔ OC-Bcast: 2 off-chip memory accesses on the critical path

➔ Binomial: 3.log2P off-chip memory accesses

➔ Throughput (one chunk)

➔ 3 times less write accesses to off-chip memory with OC-Bcast

22

Summary

 The Intel SCC provides efficient RMA to on-chip MPB for fast
communication

 Study of collective operations

➔ OC-Bcast

➔ Pipelined k-ary tree
➔ Takes into account contention issues

➔ At least 27% lower latency
➔ 3 times better throughput

 Building collectives on top of on-chip one-sided operations can
help improving performance of collective operations on many-
core chips

➔ Confirmed by the analytical study

 High-Performance RMA-Based Broadcast on the Intel SCC,
SPAA, 2012.

23

New results: Asynchronous broadcast

 Leveraging parallel interrupts for collective operations

➔ System level services

➔ Many-core OS

 Broadcast based on parallel interrupts

➔ A userspace library to manipulate parallel interrupts

➔ An asynchronous version of OC-Bcast

➔ Low single broadcast latency

➔ Efficient handling of concurrent broadcasts

➔ 68% of maximum theoretical bandwidth

24

Ongoing Work

 Efficient communication library for the Intel SCC

➔ Study of other collectives

 Implementation of concurrent data structure on many-cores
processors

➔ Shared vs replicated data structure

➔ Each process has a copy of the data structure in its private
memory

➔ The data structure is stored in shared memory
➔ Implementation of atomic broadcast

25

Towards Efficient Collective Operations
on the Intel SCC

Darko Petrović, Omid Shahmirzadi, Thomas Ropars, André Schiper

Distributed Systems Laboratory

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

