

A detailed analysis of fault prediction results and impact for HPC systems.

Ana Gainaru, Franck Cappello, Bill Kramer

Motivation

- Log files give useful information
 - Systems generate events about hardware, application, user actions
- Classic data mining workflow:
 - 1) Group events of same type in clusters
 - 2) Filter redundant events (in space and time)
 - 3) Correlation analysis (explore time or/and space dependencies)
 - 4) Event or failure prediction.
- Best result so far: Good precision (80%) and recall (70%)
 - From failure logs (not event logs) + Resource Usage log
 - Very long training phase (predicting 1 month from 9 months of training)
- Observation
 - Different error types present different distributions
 - Analyze behavior differences in all events

Hybrid method

Signal analysis

- Occurrences of each event types are considered as time series
 - Different event types become different signals
- Variation in signal's normal behavior identifies suspicious events that could represent failures
- Easy to shape and characterize different behaviors
- Data mining
 - Optimized on finding patterns
 - Correlation extraction
 - Fast online outlier detection

Signal analysis

Silent signal characteristic of error events. PBS errors

Noise signal

typically Warning messages: Memory errors corrected by ECC

Periodic signals daemons, monitoring

The sixth workshop of the Joint Laborator

Table of contents

- Signals analysis
 - Pre-process
 - Analysis methodology
- Results
 - Correlation
 - Location analysis
 - Prediction
 - First step: Prediction's impact on checkpoiting

Pre-processing

 Looking for frequently occurring messages with similar syntactic patterns

- HELO: Hierarchical Event Log Organizer
- Signal extraction
 - Use a sampling rate (different depending on the signal)
 - Map number of events for each sample

Template	Event type		
failed to configure resourcemgmt subsystem $err = 10$	Processor cache error		
psu failure	PSU failure		
component state change: component * is in the * state *	State change in a component		
Table II			
EVANDLES OF TEMPLATES AND THEID EVENT TYDES			

EXAMPLES OF TEMPLATES AND THEIR EVENT TYPES

Methodology

Analysis modules

1) Outlier detection

- Causal moving data window
 - Each observed data point is compared to the median
 - Based on the distance between the points we detect outliers
- Threasholds
 - 2 months time window
 - Different distance values automatically selected
- Advantages
 - Decrease the influence of severe outliers on signals

Analysis modules

2) Signal correlation

- Data mining algorithm
 - Filter out the normal behavior
 - Apply a algorithm based on the GRITE data mining algorithm
 - Tree-based exploration multi-set correlations

3) Location correlation

• Set of locations that events propagate on

Results

Experiments on BlueGene/L

- Offers information about event severity
- Analyze location prediction
- Additional experiments on Mercury
- Correlations

- Patterns, breakdown on different components
- Prediction
 - Precision, recall, time between prediction and occurrence

Signal Correlations

Examples of correlations

- Memory errors
 - Starting: correctable error detected in directory *
 - Ending: parity error in read queue *
 - Time delay: around one minute
- Node card errors
- Multi-line messages
- Component restart sequences
- 23% cannot be used for prediction
 - Refer only to informational messages
 - Eliminate all events with INFO severity

Signal Correlations

Dissection

• Distribution of the events that compose a sequence

• Time delay between correlations

Pairs of correlations 33.6% have at least 10 seconds 7.8% have at least 1 minute and 2.1% over 10 minutes Complete sequences 54.1% have at least 10 seconds 19.4% have at least 1 minute and 5.7% over 10 minutes

Location Correlations

Propagation behavior

Rack

Midplane
Node card
No propagation

- Around 20-25% events propagate
- Cumulative distribution of the number of different locations per chain

Example: NFS (network file system) on Mercury

- Propagation break down
 - Initial pair of correlated events
 - 76,92% show no propagation
 - 2.16% expend outside the midplane

Prediction

Prediction process overview

• Visible prediction window

Precision and recall

Prediction results

- Analysis window: avg 2 seconds, worst case 8.43
- Signal analysis many sequences, small length
 - Higher analysis window
- Data mining approach
 - Looses correlations between signals of different types
- Location prediction results
 - 93% to 86% precision
 - 43% to 40% recall
- Force best precision

Prediction breakdown

Appearances of different error types

- reported to all errors in the system
- dark: correctly predicted cases out of total occurences

Other observations

Sequence use for prediction

- 23.5% of sequences are used in over 90% of the cases
- 2.5% of sequences are never used for prediction
- Visible prediction window
 - 85% of the prediction offer more than 10 seconds
 - 36.6% of the total failures on BlueGene/L are seen with more than 10 seconds in advance

Impact on checkpointing

Analytical model

- Start with the formula from describing the waste for a checkpointing strategy from [1]
 - Accounts for checkpointing time, recovery time and the lost due to faults
- Include a prediction with a precision and recall
 - Changes the mttf, adds the waste of taking checkpoints when predicting an error, adds the waste when the prediction is wrong
- For C = R = 5 , D = 1 minutes

Mttf	Precision	Recall	Waste
1 day	92	36	10.4%
5 h	90	50	22%

[1] F. Cappello, H. Casanova, and Y. Robert: Checkpointing vs. migration for post-petascale supercomputers. International Conference on Parallel Processing, 2010

Conclusions

Signal analysis

- Different event types may have different normal behaviors
- Faults affect event types in a different way
- Data mining
 - Correlations
 - Location prediction
- Apply the model for fault prediction
 - Precision of 90% and recall of 40%
 - Prediction over 10 seconds before event

Future work

- Noise in each analysis step
 - Optimize the steps that influence the results
- Breakdown on components
 - Shows uneven distribution on precision
 - Better understanding for certain error types
- Fault distribution after prediction
 - Better analytical model
- Combine the prediction module with a checkpointing strategy

Thank you

Ana Gainaru (againaru@illinois.edu)

A detailed analysis of fault prediction results and impact for HPC systems.