Argonne°

NATIONAL LABORATORY

Recent Activities in Programming Models
and Runtime Systems at ANL

Rajeev Thakur
Deputy Director
Mathematics and Computer Science Division
Argonne National Laboratory

Joint work with Pavan Balaji, Darius Buntinas, Jim Dinan,
Dave Goodell, Bill Gropp, Rusty Lusk, Marc Snir

,'_ U.S. DEPARTMENT OF
2/ ENERGY

Programming Models and Runtime Systems
Efforts at Argonne

MPI and Low-level Data
Movement Runtime Systems

High-level Tasking and Global
Address Programming Models

Accelerators and Heterogeneous
Computing Systems

MPI at Exascale

= We believe that MPI has a role to play even at exascale, particularly in the
context of an MPI+X model

= The investment in application codes and libraries written using MPI is on
the order of hundreds of millions of dollars

= Until a viable alternative to MPI for exascale is available, and applications
have been ported to the new model, MPI must evolve to run as efficiently
as possible on future systems

= Argonne has long-term strength in all things related to MPI

MPI and Low-level Runtime Systems

= MPICH implementation of MPI
— Scalability of MPI to very large systems

e Scalability improvements to the MPIl implementation

e Scalability to large numbers of threads

— MPI-3 algorithms and interfaces
e Remote memory access

e Fault Tolerance

— Research on features for future MPI standards
¢ |nteraction with accelerators
e Interaction with other programming models

= Data movement models on complex processor and memory
architectures

— Data movement for heterogeneous memory (accelerator memory,
NVRAM)

Pavan Balaji wins DOE Early Career Award

= Pavan Balaji was recently awarded the highly competitive and prestigious
DOE early career award (S500K/yr for 5 years)

= “Exploring Efficient Data Movement Strategies for Exascale Systems with
Deep Memory Hierarchies”

o 5
\

MPICH-based Implementations of MPI

= |BM MPI for the Blue Gene/Q

— IBM has successfully scaled the LAMMPS application to over 3 million MPI
ranks and submitted a special Gordon Bell prize entry

e Soit’s not true that MPI won’t scale!

— Will be used on Livermore (Sequoia), Argonne (Mira), and other major BG/Q
installations

= Unified IBM implementation for BG and Power systems

= Cray MPI for XE/XK-6

— On Blue Waters, Oak Ridge (Jaguar, Titan), NERSC (Hopper), HLRS Stuttgart,
and other major Cray installations

= Intel MPI for clusters

= Microsoft MPI

= Myricom MPI

= MVAPICH2 from Ohio State

MPICH Collaborators/Partners

= Core MPICH developers
= |[BM
* INRIA ZJINR
= Microsoft
= |ntel
= University of lllinois
= University of British Columbia
= Derivative implementations

—_— Leap ahead

| Cray EPEPUTER COMPANY
= Myricom |y Myr’c—&"
= Ohio State University =— MVAPICH g
= QOther Collaborators - Xf/

= Absoft absat Pacific Northwest.
= Pacific Northwest National Laboratory g
" Qlogic XX oLoGic

: : ueern’s
= Queen’s University, Canada Queerns
= Totalview Technologies r r r

. . U{JH[E\IIVERSITY
=_University of Utah TOTALVIEW OF UTAH

nnnnnnnnnnnn 11/17/10

Accelerators and Heterogeneous
Computing Systems

= Accelerator-augmented data movement models

— Integrated data movement models that can move data from any

memory region of a given process to any other memory region of
another process

e E.g.,, move data from accelerator memory of one process to that of another
— Internal runtime optimizations for efficient data movement
— External programming model improvements for improved productivity

= Virtualized accelerators

— Allow applications to (semi-)transparently utilize light-weight virtual
accelerators instead of physical accelerators

— Backend improvements for performance, power, fault tolerance, etc.

Recent Work

1. MPI-ACC (ANL, NCSU, VT)
— Integrate awareness of accelerator memory in MPICH2
— Productivity and performance benefits
— To be presented at HPCC 2012 Conference, Liverpool, UK, June 2012

2. Virtual OpenCL (ANL, VT, SIAT CAS)
— OpenCL implementation allows program to use remote accelerators
— One-to-many model, better resource usage, load balancing, FT, ...
— Published at CCGrid 2012, Ottawa, Canada, May 2012

3. Scioto-ACC (ANL, OSU, PNNL)
— Task parallel programming model, scalable runtime system
— Coscheduling CPU and GPU, automatic data movement

Current MPI+GPU Programming

double *dev_buf, *host_ buf;
cudaMalloc (&dev_buf, size);
cudaMallocHost (&host_buf, size);

if (my_rank == sender) { /* sender */

comPutation_on_GPU(dev_buf);

cudaMemcpy (host_buf, dev_buf, size,

.)

MPI Send(host_buf, size, ...);
} else {
MPI Recv (host_buf, size, ...);

/* receiver x*/

cudaMemcpy (dev_buf, host_buf, size,

2) i

computation_on_GPU (dev_buf);

= MPI operates on data in host memory only

= Manual copy between host and GPU memory serializes PCle, Interconnect

— Can do better than this, but will incur protocol overheads multiple times

= Productivity: Manual data movement

= Performance: Inefficient, unless large, non-portable investment in tuning

10

MPI-ACC Interface: Passing GPU Buffers to MPI

UVA Lookup Overhead (CPU-CPU)

14

= Basic MPI Attributes
12 B MPI + Explicit parameters check ()
B MPI + Datatype attribute check CL Context
10 - ® MPI + Automatic detection ~ . =
Z MPI ()
:° CL_Mem
5o Datatype k
CL_Device_ID

- J

~N

CL_Cmd_queue

/

0 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192
Data Size (bytes)

= Unified Virtual Address (UVA) space

— Allow device pointer in MPI routines directly
— Currently supported only by CUDA and newer NVIDIA GPUs
— Query cost is high and added to every operation (CPU-CPU)

= Explicit Interface —e.g. MPI_CUDA_Send(...)
= MPI Datatypes — Compatible with MPIl and many accelerator models

11

MPI-ACC: Integrated, Optimized Data Movement

= Use MPI for all data movement

— Support multiple accelerators and prog. models (CUDA, OpenCL, ...)
— Allow application to portably leverage system-specific optimizations

= Inter-node data movement:
— Pipelining: Fully utilize PCle and network links
— GPU direct (CUDA): Multi-device pinning eliminates data copying
— Handle caching (OpenCL): Avoid expensive command queue creation

= Intra-node data movement:

— Shared memory protocol

e Sender and receiver drive independent DMA transfers
— Direct DMA protocol

e GPU-GPU DMA transfer (CUDA IPC)

— Both protocols needed, PCle limitations serialize DMA across 1/0 hubs

12

Integrated Support for User-Defined Datatypes

MPI_Send(buffer, datatype, count, to, ..
MPI_Recv(buffer, datatype, count, from, ..

GPU

1 2 3 4 5
6 7 8 9 10
11 | 12 | 13 | 14 | 15

Pack

(1] 2]6]7]nn]i12]
/
PCIeTranV
CPU
Network/
(1]2]6]7]n]12]

Packing Time (Microseconds)

1000 ¢

100

10

)

What if the datatype is noncontiguous?

4D Subarray

T T T T T T IRV
Pack ---+--- B
Manual ---x---- *]
CUDA e '
* ;o
o ¥ X
- . " /‘ek -
e Sttt st I % *
| | | L0 | | L
26 28 210 212 214 216 218 220 222

)

CUDA doesn’t support arbitrary noncontiguous transfers
Pack data on the GPU

— Flatten datatype tree representation

— Packing kernel that can saturate memory bus/banks

13

\ |
Inter-node GPU-GPU Latency

65536
32768 -
16384 -
8192 -
4096
2048
1024
512
256
128
64

32

16

- MPI-ACC

—-Manual Blocking

—A—Manual Non blocking (Pipelined)

—<MPI Send/Receive (CPU-only; Lower Bound)

Latency (us)

Data Size (bytes)

= Pipelining (PCle + IB) pays off for large messages — 2/3 latency

14

GPUs as a Service: Virtual OpenCL

= Clusters, cloud systems, provide GPUs on subset of nodes
= OpenCL provides a powerful abstraction
— Kernels compiled on-the-fly —i.e. at the device
— Enable transparent virtualization, even across different devices
= Support GPUs as a service
— One-to-Many: One process can drive many GPUs
— Resource Utilization: Share GPU across applications, use hybrid nodes
— System Management, Fault Tolerance: Transparent migration

15

Virtual OpenCL (VOCL) Framework Components

Local node Remote node
Application <Proxy>
OpenCL|API N\ \
: Native OpenCL
VOCL Lib
orary Library
N ¢ ¢
__Vepu il GpPu | . GPU_ |

= VOCL library (local) and proxy process (system service)
= APl and ABI compatible with OpenCL — transparent to app.

= Utilize both local and remote GPUs
— Local GPUs: Call native OpenCL functions
— Remote GPUs: Runtime uses MPI to forward function calls to proxy

High-level Tasking and Global Address
Programming Models

= Led by Jim Dinan

= High-level tasking execution model for performing
computations in dynamic environments
— Programming model interface and implementation

— Multiple programming model implementations for this tasking model
to work with MPI, PGAS models, etc.

= |nteroperable global address space and tasking models
— Unified runtime infrastructure

= Benchmarking
— Unbalanced Tree Search family of benchmarks

17

Scioto-ACC: Accelerated, Scalable Collections of
Task Objects

HE 5

Process O ... Processn

SPMD

ﬁ TaSk
Parallel

Termination

SPMD

= Express computation as collection of tasks
— Tasks operate on data in Global Address Space (GA, MPI-RMA, ...)
— Executed in collective task parallel phases
= Scioto runtime system manages task execution
— Load balancing, locality opt., fault resilience
— Mapping to Accelerator/CPU, data movement

Led by Jim Dinan

18

Other Recent Papers

“Scalable Distributed Consensus to Support MPI Fault Tolerance”
— Darius Buntinas, IPDPS 2012, Shanghai, China, May 2012

— Scalable algorithm for a set of MPI processes to collectively determine which
subset of processes among them have failed

“Supporting the Global Arrays PGAS Model Using MPI One-Sided
Communication”

— James Dinan, Pavan Balaji, Jeff Hommond, Sriram Krishnamoorthy, Vinod
Tipparaju, IPDPS 2012, Shanghai, China, May 2012

— Implements ARMCI interface over MPI one-sided

“Efficient Multithreaded Context ID Allocation in MPI”

— James Dinan, David Goodell, William Gropp, Rajeev Thakur, Pavan Balaji,
submitted to EuroMPI1 2012

— Clever algorithm for multithreaded context id generation for
MPI_Comm_create_group (new function in MPI-3)

19

Non-Collective Communicator Creation

= Create a communicator collectively
only on new members

= Global Arrays process groups
— Past: collectives using MPI Send/Recv

= (Qverhead reduction

— Multi-level parallelism
— Small communicators when parent is large

= Recovery from failures
— Not all ranks in parent can participate

= Load balancing

- 20

Non-Collective Communicator Creation
Algorithm (using MPI 2.2 functionality)

/I 0 1 2 3 4 5 6 7
N

MPI_COMM_SELF | MPI_Intercomm_create
(intracommunicator) MPI_Intercomm_merge (intercommunicator)

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 /

a 21

Non-Collective Algorithm in Detail

INPUT: group, comm, tag

OUTPUT: comm/

REQUIRE: group is ordered by desired rank in comm’ and is identical on all callers
LET: grp_pids|0..|group| — 1] = N and pids| | be arrays of length |group|

MPI_Comm_rank(comm, &rank)
MPI_Group_rank(group, &grp_rank), MPI_Group_size(group, &grp_size)
MPI_Comm_dup(MPI.COMM _SELE, &comm) Translate group ranks to

| .
MPL Comm_group(comsm, &parent.grp) ordered list of ranks on

MPI_Group_translate_ranks(group, grp_size, grp_pids, parent_grp, pids) parent commun icator
MPI_Group_free(&parent_grp)

for (merge_sz <— 1; merge_sz < grp_size; merge_sz <— merge_sz - 2) do
id «+ grp_rank/merge_sz, comm_old + comm/’
;"fgid ﬁlfw:{)thef <€ Calculate my group ID
if ((gid + 1) - merge_sz < grp_size then
MPI_Intercomm_create(comm’, 0, comm, pids[(gid + 1) - merge_sz|, tag, &ic) ft
MPILIntercomm_merge(ic, 0 /* LOW #/, &comm) Le group
end if
else
MPI_Intercomm_create(comm’, 0, comm, pids|(gid — 1) - merge_sz|, tag, &ic) .
MPI_Intercomm_merge(ic, 1 /* HIGH *#/, &:com['r(n’))] } nght group
end if
if comm’ # comm_old then
MPI_Comm_free(&ic)
MPI_Comm_free(&comm_old)
end if
end for

22

Evaluation: Microbenchmark

18 —
Group-collective Ollog?
16 I+ MPI_Comm_create ===s== (log*g)
S 14t
(7p)
E 12}
@ 4ot
=
s O
g ° |
') L e O(log p)
2 G it = mY) mm mfpn = = ""'""""""---”--*— ,,,,,,,,,,,,,,,,,,, i
0 ! . ! ! ! ! . ! . !
1 4 16 64 256 1024 4096

Group Size (processes)

23

New MPI-3 Function MPI_Comm_create_group

MPI_Comm_create_group(MPI_Comm in, MPI_Group grp, int tag,
MPI_Comm *out)

— Collective only over process in “grp”
— Tag allows for safe communication and distinction of calls

= Eliminate O(log g) factor by direct implementation

24

Deadlock scenario in existing multithreaded
context id generation algorithm in MPICH2

Process 0 é Process |
Thread 0 Thread 1 Thread O Thread 1
Dup(Comm_1) Dup(Comm_0)
(holds mask) (holds mask)
Dup(SELF) Dup(SELF)
(mask unavailable) (mask unavailable)

S S S ——— — — —

25

Avoiding the deadlock

= Simple solution: Add a barrier on entry to the algorithm

= However, it is additional synchronization overhead

= Better solution

Use the synchronization to attempt to acquire a context id
Partition the context id space into two segments: eager and base
Instead of the barrier, do an Allreduce on the eager segment

If eager allocation fails, the allreduce acts like a barrier, and the context id is
acquired in the second call to allreduce

If eager allocation succeeds (which in most cases it will), the overhead of an
additional barrier is avoided

Eager i Base

Context id space

26

Creation Time (msec)

Performance
Base MPI_Comm_create = 1024.00 ‘ ' : ' '
Eager Mgégg?\'n;?)gcrggg SRR ' Base User-level CCG ——
v e | Eager User-level CCG ====~
Eager Natlve CCG ienprs G 25600 gBase Naﬁve CCG ces@ens g
& 64.00 Eagef Native CCG Wit Rl |
64.0 E
?g-g ' e 16.00
f.g - § 1.00f
=l O
05t 0.25
0.2 {
0.1 " M M M " 0.06 N . . X .
6 32 64 128 256 512 1024 16 32 64 128 256 512 1024
Group Size (processes) Group Size (processes)

(a) Comparison with MPI_Comm _create (b) Comparison with User-level CCG

27

Global Arrays over MPI One sided

Global Arrays, a Global-View Data Model

Proc, Proc, Proc,
a
o Shared
g ()
© 8
v .
o Private
O

= Distributed, shared multidimensional arrays
— Aggregate memory of multiple nodes into global data space
— Programmer controls data distribution, can exploit locality

= One-sided data access: Get/Put({i, j, k}...{i", j’, kK'})
= NWChem data management: Large coeff. tables (100GB+)

29

ARMCI: The Aggregate Remote Memory Copy Interface

= GA runtime system

— Manages shared memory

— Provides portability GA_Put(iy}y’})
> ARMCI_PutS(rank, addr, ...)

— Native implementation

= One-sided communication

— Get, put, accumulate, ...
— Load/store on local data
— Noncontiguous operations
= Mutexes, atomics, collectives,
processor groups, ... 2 \L \l’ 3
= Location consistent data access

— | see my operations in issue order

30

Implementing ARMCI

ARMCI Support Native ARMCI-MPI
— Natively implemented NWChem NWChem
— Sparse vendor support Global Arrays Global Arrays
— Implementations lag systems ARMC! >|_ARMCI

, o MPI MPI

MPI is ubiquitous Native Native

— Support one-sided for 15 years
Goal: Use MPI RMA to implement ARMCI

1. Portable one-sided communication for NWChem users

2. MPI-2: drive implementation performance, one-sided tools
3. MPI-3: motivate features

4. Interoperability: Increase resources available to application

e ARMCI/MPI share progress, buffer pinning, network and host resources

Challenge: Mismatch between MPI-RMA and ARMCI

31

ARMCI/MPI-RMA Mismatch

1. Shared data segment representation
— MPI: <window, displacement>, window rank
— ARMCI: <address>, absolute rank
— Perform translation

2. Data consistency model
— ARMCI: Relaxed, location consistent for RMA, CCA undefined
— MPI: Explicit (lock and unlock), CCA error
— Explicitly maintain consistency, avoid CCA

32

NWChem Performance (XE6)

18

—_l
&)

CCSD Time (min)

Cray XE6

L ARMCI-MPI (T)

ARMCI-MPI CCSD =—e—
ARMCI-Native CCSD ==#==-

ARMCI-Native (T) ====:

744 1488 2232 2976 3720 4464 5208 595

Number of Cores

30

25

20

15

0
2

(T) Time (min)

33

NWChem Performance (BG/P)

Blue Gene/P
35 . .
ARMCI-MPI CCSD =t

30 b ARMCI-Native CCSD ==w==:
c 25
£
()]
£ 20
|_
A 15
%
5] 10

5

O 2 2 2

0 256 512 768 1024

Number of Nodes

34

An idea and a proposal in need of funding

The Deep Exascale Stack (DXS)

LEGEND

New programming
models
Translators

(Technology
leveraged)

Major new
components

DXS Execution Engine
(DEE)

ANL, UIUC, UTexas, UTK,
UOregon, LLNL

b

Domain-Specific
Language code

l

old Ilbrary codes

Old MPI

/pllcatlon codes

DSL-to-PM translation
(ROSE)

EcIipse Refacjoring

Plug-in's

New codes —————> Partifioned M‘gel (Pv}/

(miniapps)
\ PM-to- DM trans

(ROSE, Orio)

quon

Wc Data\low Mo/!el (DDM)

E tra

O

fslatlon

DXS Ilbrary
\
Ch

mtl e
+{, DAGUE)

(Nemesis)

i

|

L2
Low-level systgm services Commercial
power mgt, rdsilience compiler
vV V¥ v

Instrumented hardware
(real, emulated)

N~/
N/
N~/

p—
N/
N~/

9sodx3

(NvL)

(punoqd)
S|apow 150D

36

