
Solving general dense linear systems on hybrid
multicore-GPU systems

Adrien RÉMY, Marc BABOULIN

June 14, 2012

Outline

Mono GPU hybrid solvers
LU factorization
CPU/GPU algorithms
Results

Multi GPU
Method
Results

Ongoing Work
GMAC

2 on 22

Mono GPU hybrid solvers
LU factorization
CPU/GPU algorithms
Results

Multi GPU
Method
Results

Ongoing Work
GMAC

2 on 22

Mono GPU hybrid solvers
LU factorization
CPU/GPU algorithms
Results

Multi GPU
Method
Results

Ongoing Work
GMAC

2 on 22

The issue of pivoting in linear systems

� General square system Ax = b, solved by Gaussian Elimination
� Difficulties when zero or small diagonal elements
→ interchange rows: partial pivoting (GEPP)

� GEPP is implemented in most numerical libraries (LAPACK. . .).
Used in the LINPACK benchmark for TOP500 list

� Factorization PA = LU, where P is a permutation matrix
� No floating point operation is performed in pivoting but it involves irregular

movements of data
� Communication overhead due to pivoting : O(n2) comparisons

3 on 22

Pivoting is expensive

Figure: Cost of partial pivoting in LU factorization (MAGMA)
CPU 1 × Quad-Core Intel Core2 Q9300 @ 2.50 GHz - GPU C2050 @ 1.15 GHz

4 on 22

Right-looking block LU factorization

� Factorization→ A = L∗U
� Pivoting→ P ∗A = L∗U

1. Panel (block column) is factored
using Gaussian elimination.

2. Permutations are applied to trailing
submatrix.

3. Solve triangular system to compute
the b first rows.

4. Update trailing submatrix.

b

5 on 22

Mono GPU hybrid solvers
LU factorization
CPU/GPU algorithms
Results

Multi GPU
Method
Results

Ongoing Work
GMAC

5 on 22

LU implementation for GEPP in MAGMA

1 2 3

b

Figure: Block splitting in hybrid LU factorization

6 on 22

MAGMA implementation

Initial matrix has been transferred to the GPU.
Current iteration:
� Current panel (1) is downloaded to the CPU

� (1) is factored by the CPU using GEPP and the result is sent back to the GPU

� The GPU updates (2) (next panel)

� The updated panel (2) is sent back to the CPU to be factored while the GPU
updates the rest of the matrix (3) (look-ahead)

Communication issues:
� Only panels are transferred between CPU and GPU (O(n ∗b) data vs

O(n ∗n ∗b) computation in the updates)

� Total overlap of the panel computation by the updates for n large enough.

7 on 22

PRBT Solver

� PRBT (Partial Random Butterfly Transformation) is an LU solver based on
randomization (see [Baboulin et al., TOMS, to appear]).

� Using the PRBT solver, we solve the general linear system Ax = b by the
following steps:

Algorithm 1 Solving Ax = b with PRBT

1: Compute randomized matrix Ar = UT AV , with U and V recursive butterflies.
2: Factorize Ar with GENP.
3: Solve Ar y = UT b.
4: Solution is x = Vy .

� Properties :
� Randomization is cheap (O(n2) operations)
� GENP is fast (take advantage of the GPU)
� Accuracy is in practive similar to GEPP (with iterative refinement)

8 on 22

Communication-avoiding LU

Panel factorization (on CPU) based on tournament pivoting
(see [Grigori et al., SIMAX 2011])

Implemented as a reduction operation :
� Partition the panel in blocks
� Select in parallel a set of local pivots using PP
� Perform tournament on the local sets to select global pivots
� Global pivots are moved to diagonal positions and GENP is performed on the

entire panel

9 on 22

Tournament pivoting

Figure: Panel factorization on CPU using Tall and Skinny LU with tournament pivoting

10 on 22

Hybrid version of CALU (H-CALU)

C
P
U

G
P
U

C
P
U

G
P
U

· · ·

Step 1 Step 2 Step 3

Figure: Hybrid LU factorization (4 panels).

11 on 22

Mono GPU hybrid solvers
LU factorization
CPU/GPU algorithms
Results

Multi GPU
Method
Results

Ongoing Work
GMAC

11 on 22

Performance results

� Hybrid CPU/GPU algorithms implemented following MAGMA development
guidelines

� GPU device: NVIDIA Fermi Tesla S2050 (448 CUDA cores)
Multicore host: 4×12-Core AMD Opteron 6172 Magny-Cours @ 2.1 GHz,
128GB memory, theroretical peak 403.2 Gflop/s (8.4 Gflop/s per core) in
double precision

� Panel factorization: comparisons against MKL multithreaded
� Hybrid LU solvers: We compare MAGMA, PRBT and H-CALU

12 on 22

Comparison of CPU multi-threaded panel factorizations

 0

 5

 10

 15

 20

 25

 30

 35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

G
fl
o
p
/s

Threads

Matrix size = 5120, panel size = 256

dgetrf
rgetf2
CALU
PRBT

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

G
fl
o
p
/s

Threads

Matrix size = 10240, panel size = 320

dgetrf
rgetf2
CALU
PRBT

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

G
fl
o
p
/s

Threads

Matrix size = 15360, panel size = 512

dgetrf
rgetf2
CALU
PRBT

 0

 10

 20

 30

 40

 50

 60

 70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

G
fl
o
p
/s

Threads

Matrix size = 21504, panel size = 768

dgetrf
rgetf2
CALU
PRBT

13 on 22

Performance on square matrices

 0

 50

 100

 150

 200

 250

 300

1024 3072 5120 7168 9216 11264 13312 15360 17408

G
fl
o

p
/s

Matrix size

magma_dgetrf
H-CALU

PRBT

14 on 22

Tests on accuracy

� We compare 3 solvers:
� MAGMA/GEPP
� H-CALU
� PRBT (2 recursions)

� We report componentwise backward error ω = maxi
|Ax−b|i

(|A|·|x |+|b|)i

� Iterative refinement is systematically added
� Test matrices from the LAPACK tester:

1 Diagonal 7 Last n/2 columns zero
2 Upper triangular 8 Random, κ =

√
0.1/ε

3 Lower triangular 9 Random, κ = 0.1/ε

4 Random, κ = 2 10 Scaled near underflow
5 First column zero 11 Scaled near overflow
6 Last column zero

15 on 22

Accuracy Comparison

Table: Componentwise Backward Error

Matrix MAGMA LU H-CALU PRBT No pivoting
Type (magma_dgetrf)

1 0.0 0.0 1.42e-16(1) 0.0
2 1.32e-16 1.32e-16 4.02e-16(3) 6.19e-16
3 1.85e-16 1.85e-16 2.46e-16(3) 2.14e-16
4 2.16e-16 2.76e-16 2.93e-16(2) 1.13e-11
5 - - - -
6 - - - -
7 - - - -
8 2.10e-16 3.76e-16 2.64e-16(3) 2.94e-12
9 2.70e-16 6.37e-16 1.16e-13(1) 1.41e-13

10 7.60e-14 7.40e-14 4.01e-14(2) 2.42e-11
11 2.27e-16 2.11e-16 2.41e-16(2) 2.90e-11

16 on 22

Mono GPU hybrid solvers
LU factorization
CPU/GPU algorithms
Results

Multi GPU
Method
Results

Ongoing Work
GMAC

16 on 22

Mono GPU hybrid solvers
LU factorization
CPU/GPU algorithms
Results

Multi GPU
Method
Results

Ongoing Work
GMAC

16 on 22

Multi GPU implementation

Original matrix is distributed among the GPUs (1D block cyclic)

GPU1 GPU2 GPU3CPU

Figure: LU factorization using 3 GPUs

17 on 22

Multi GPU implementation

First panel is sent to the CPU

GPU1 GPU2 GPU3CPU

Figure: LU factorization using 3 GPUs

17 on 22

Multi GPU implementation

CPU factors the panel

GPU1 GPU2 GPU3CPU

Figure: LU factorization using 3 GPUs

17 on 22

Multi GPU implementation

Factored panel is sent to the GPUs

GPU1 GPU2 GPU3CPU

Figure: LU factorization using 3 GPUs

17 on 22

Multi GPU implementation

GPUs update trailing submatrices

GPU1 GPU2 GPU3CPU

Figure: LU factorization using 3 GPUs

17 on 22

Multi GPU implementation

2nd panel is sent to the CPU

GPU1 GPU2 GPU3CPU

Figure: LU factorization using 3 GPUs

17 on 22

Multi GPU implementation

CPU factors new the panel while GPUs still update trailing submatrices

GPU1 GPU2 GPU3CPU

Figure: LU factorization using 3 GPUs

17 on 22

Mono GPU hybrid solvers
LU factorization
CPU/GPU algorithms
Results

Multi GPU
Method
Results

Ongoing Work
GMAC

17 on 22

Performance results

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

1 2 3 4

S
p

e
e

d
u

p

Number of GPUs

Multi GPU LU factorization

Size = 5120/

Size = 10240/

Size = 15360/

Size = 20480/

No pivoting (optimized for PRBT)

Partial pivoting

18 on 22

Mono GPU hybrid solvers
LU factorization
CPU/GPU algorithms
Results

Multi GPU
Method
Results

Ongoing Work
GMAC

18 on 22

Going to a bigger scale

� Using clusters of GPUs
� Distributed memory version of LU factorization with multiple GPUs in

progress
� Using GMAC for managing communication

19 on 22

Mono GPU hybrid solvers
LU factorization
CPU/GPU algorithms
Results

Multi GPU
Method
Results

Ongoing Work
GMAC

19 on 22

What is GMAC ?

� GMAC [I. Gelado et al. ASPLOS’10](Global Memory for ACcelerators)
provides unified virtual address for CUDA

� Simplify the CPU code
� Single virtual address space for CPUs and GPUs
� Provide advanced CUDA features for free :

� Asynchronous data transfer
� Pinned memory
� GPU to GPU communication
� Get access to any GPU from any CPU thread

� Collaboration with Wen-Mei Hwu (University of Illinois at Urbana-Champaign)

20 on 22

Summary

� Efficient and accurate solvers for hybrid architectures :
� Solutions for multicore accelerated with one GPU
� Solutions for multicore accelerated with several GPUs
� Give similar accuracy results on most test cases

� Difference between the solvers comes from the pivoting strategy for factoring
the panel

� Distributed version in progress to use clusters of GPUs

21 on 22

Related papers

[1] M. Baboulin, S. Donfack, J. Dongarra, L. Grigori, A. Rémy, S. Tomov,
A class of algorithms for solving general dense linear systems on CPU/GPU parallel machines.
Proceedings of ICCS 2012.

[2] M. Baboulin, D. Becker, J. Dongarra,
A Parallel Tiled Solver for Dense Symmetric Indefinite Systems on Multicore Architectures.
Proceedings of IPDPS 2012.

[3] M. Baboulin, J. Dongarra, J. Herrmann, S. Tomov,
Accelerating linear system solutions using randomization techniques.
To appear in ACM Transactions on Mathematical Software (TOMS), LAPACK Working Note 246.

[4] I. Gelado, J. Cabezas, N. Navarro, J. E. Stone, S. Patel, W. Hwu,
An asymmetric distributed shared memory model for heterogeneous parallel systems.
Proceedings of the 15th International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS 2010) . Pittsburgh, USA. March 2010.

[5] S. Tomov, J. Dongarra, M. Baboulin,
Towards dense linear algebra for hybrid GPU accelerated manycore systems.
Parallel Computing, Vol. 36, No 5&6, pp. 232-240 (2010).

[6] M. Baboulin, J. Dongarra, S. Tomov,
Some issues in dense linear algebra for multicore and special purpose architectures.
Springer LCNS Series, 9th International Workshop on State-of-the-Art in Scientific and Parallel Computing
(PARA’08).

22 on 22

	Mono GPU hybrid solvers
	LU factorization
	CPU/GPU algorithms
	Results

	Multi GPU
	Method
	Results

	Ongoing Work
	GMAC

