Hybrid static/dynamic scheduling for already optimized dense matrix factorization

Simplice Donfack, Laura Grigori, INRIA, France

Bill Gropp, Vivek Kale UIUC, USA

Joint Laboratory for Petascale Computing, INRIA-UIUC

Plan

Brief introduction of communication avoiding methods

 Lightweight scheduling for already optimized dense linear algebra (communication avoiding)

Experiments on a 48 cores AMD Opteron machine

Conclusions and future work

Motivation for Communication Avoiding Algorithms

Time to move data >> time per flop

```
Running time =

#flops * time_per_flop +

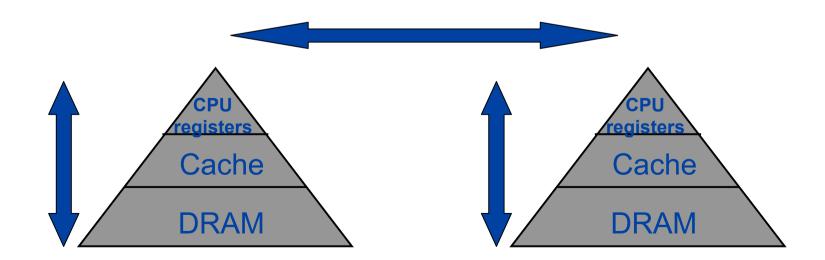
#words_moved / bandwidth +

#messages * latency
```

Improvements per year

DRAM	Network
23%	26%
5%	15%

Gap steadily and exponentially growing over time



Previous work on reducing communication

Tuning

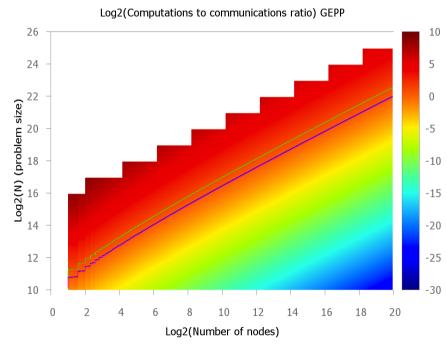
Overlap communication and computation, at most a factor of 2 speedup

Ghosting

Store redundantly data from neighboring processors for future computations

Scheduling

- Cache oblivious algorithms for linear algebra
 - Gustavson 97, Toledo 97, Frens and Wise 03, Ahmed and Pingali 00
- Block algorithms for linear algebra
 - ScaLAPACK, Blackford et al 97

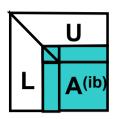


Algorithms and lower bounds on communication

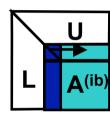
- Goals for algorithms in dense linear algebra
 - Minimize #words_moved = Ω (#flops/ M^{1/2}) = Ω (n² / P^{1/2})
 - Minimize #messages = Ω (#flops/ M^{3/2}) = Ω (P^{1/2})
 - Allow redundant computations (preferably as a low order term)
- LAPACK and ScaLAPACK
 - Mostly suboptimal
- Recursive cache oblivious algorithms
 - Minimize bandwidth, not latency, sometimes more flops (3x for QR)
- CA algorithms for dense linear algebra
 - Minimize both bandwidth and latency
 - Optimal CAQR, CALU introduced in 2008 by Demmel, Hoemmen, LG, Langou, Xiang
 - General bounds proven in 2011 by Ballard, Demmel, Holtz, Schwartz

LU factorization (as in ScaLAPACK pdgetrf)

LU factorization on a $P = P_r \times P_c$ grid of processors For i = 1 to n-1 step b $A^{(ib)} = A(ib:n, ib:n)$



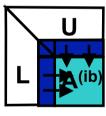
- (1) Compute panel factorization (pdgetf2) $O(n \log_2 P_r)$
 - find pivot in each column, swap rows



- (2) Apply all row permutations (pdlaswp) $O(n/b(\log_2 P_c + \log_2 P_r))$
 - swap rows at left and right
- (3) Compute block row of U (pdtrsm)

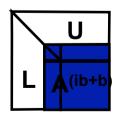
$$O(n/b\log_2 P_c)$$

- broadcast right diagonal block of L of current panel



- (4) Update trailing matrix (pdgemm)
 - broadcast right block column of L
 - broadcast down block row of U

$$O(n/b(\log_2 P_c + \log_2 P_r))$$



Factorizations that require pivoting

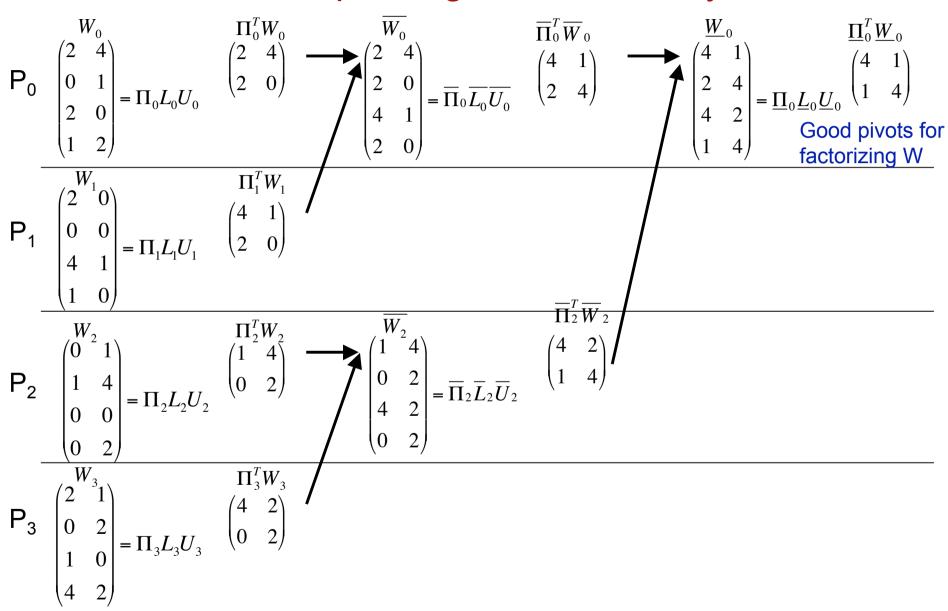
- Known pivoting techniques that minimize communication lead to unstable factorizations
- Requires new tournament pivoting scheme (LU, RRQR)
- Consider a block algorithm that factors an n-by-n matrix A.

$$A = \begin{pmatrix} \hat{A}_{11} & \hat{A}_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{cases} b \\ n - b \end{cases}$$
, where $W = \begin{pmatrix} A_{11} \\ A_{21} \end{pmatrix}$

- At each iteration
 - Preprocess W to find at low communication cost good pivots for the LU factorization of W.
 - Permute the pivots to top.
 - Compute LU with no pivoting of W, update trailing matrix.

$$PA = \begin{pmatrix} L_{11} & & \\ L_{21} & I_{n-b} \end{pmatrix} \begin{pmatrix} U_{11} & U_{12} & \\ & A_{22} - L_{21}U_{12} \end{pmatrix}$$

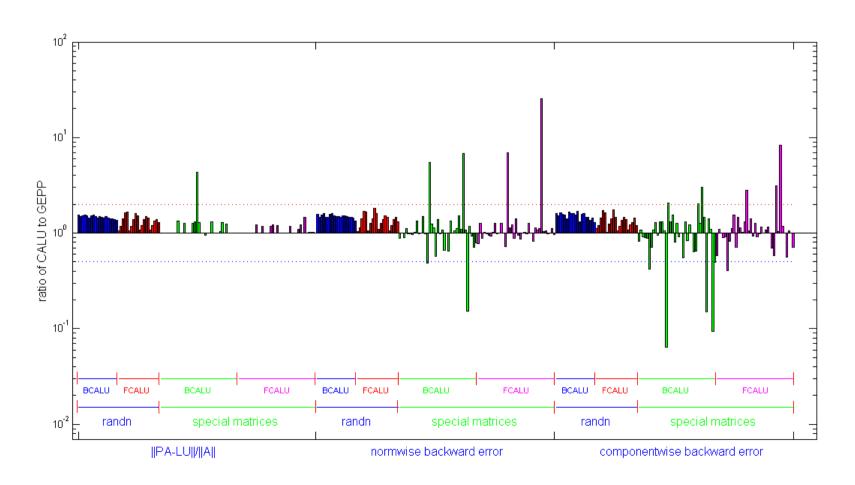
Tournament pivoting for a tall skinny matrix



time

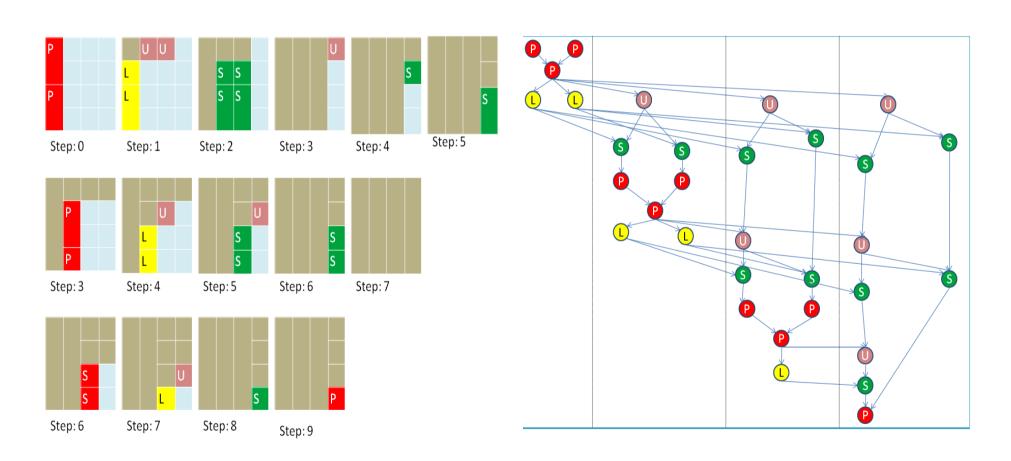
Stability of CALU (experimental results)

- Results show ||PA-LU||/||A||, normwise and componentwise backward errors, for random matrices and special ones
 - See [LG, Demmel, Xiang, 2011, SIMAX] for details
 - BCALU denotes binary tree based CALU and FCALU denotes flat tree based CALU



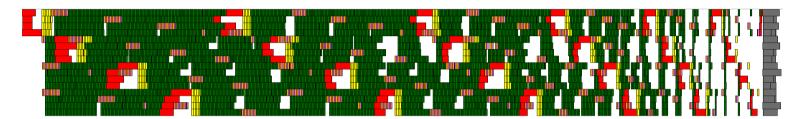
CALU and its task dependency graph

- The matrix is partitioned into blocks of size T x b.
- The computation of each block is associated with a task.



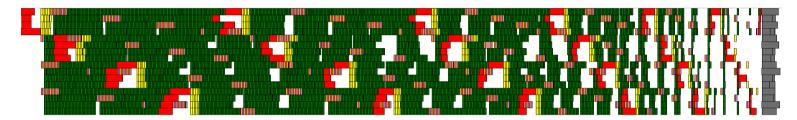
Scheduling CALU's Task Dependency Graph

- Static scheduling
 - + Good locality of data
- Ignores OS jitter



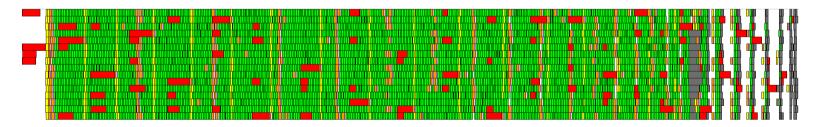
Scheduling CALU's Task Dependency Graph

- Static scheduling
 - + Good locality of data
- Ignores OS jitter



- Dynamic scheduling
 - + Keeps cores busy

- Poor usage of data locality
- Can lead to large overhead



Profiling: CALU with dynamic scheduling

Dynamic scheduling

L2, L3 Cache misses on IBM Power 7.

m=n=5000, b=150, $P=4 \times 2$

L2 cache misses	25M	
L3 cache misses	15M	
Fetch task time	0.47%	

Dynamic scheduling with data locality

L2, L3 Cache misses on IBM Power 7.

$$m=n=5000$$
, $b=150$, $P=4 \times 2$

L2 cache misses	12.5M	
L3 cache misses	3.5M	
Fetch task time	2.3%	

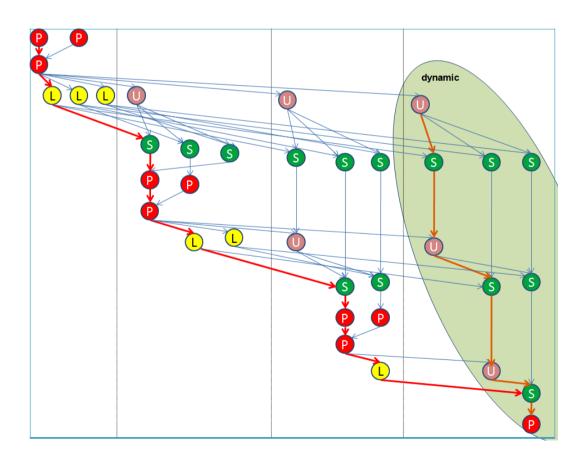
Lightweight scheduling

- Emerging complexities of multi- and mani-core processors suggest a need for self-adaptive strategies
 - One example is work stealing
- Goal:
 - Design a tunable strategy that is able to provide a good trade-off between load balance, data locality, and low dequeue overhead.
 - Provide performance consistency
- Approach: combine static and dynamic scheduling
 - Shown to be efficient for regular mesh computation [B. Gropp and V. Kale]

	Design space					
Data layout/scheduling		Static	Dynamic	Static/(%dynamic)		
Block (Cyclic Layout (BCL)	V	V	V		
2-level Block Layout (2I-BL)		V	V	V		
Colum	n Major Layout (CM)		V			

Lightweight scheduling: hybrid static/dynamic approach

- Part of the DAG is scheduled statically
 - Using a 2D block cyclic distribution of data (tasks) to threads
- A thread executes in priority its statically assigned tasks
- When no task is ready, a thread picks a ready task from the dynamic part



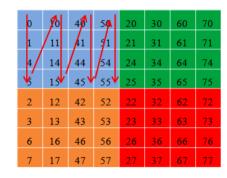
Impact of data layout

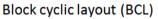
Data layouts:

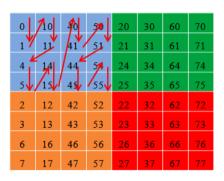
• CM : Column major order

 BCL : Each thread stores its data using CM

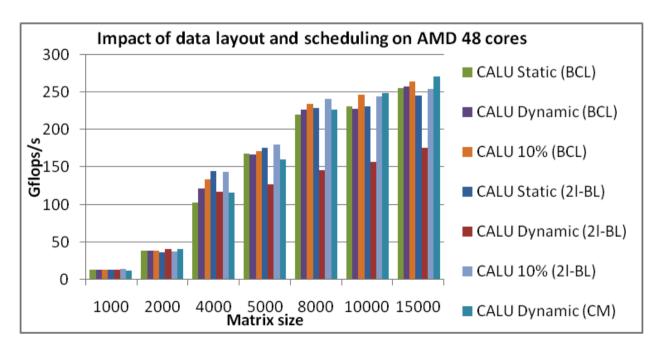
 2I-BL : Each thread stores its data in blocks





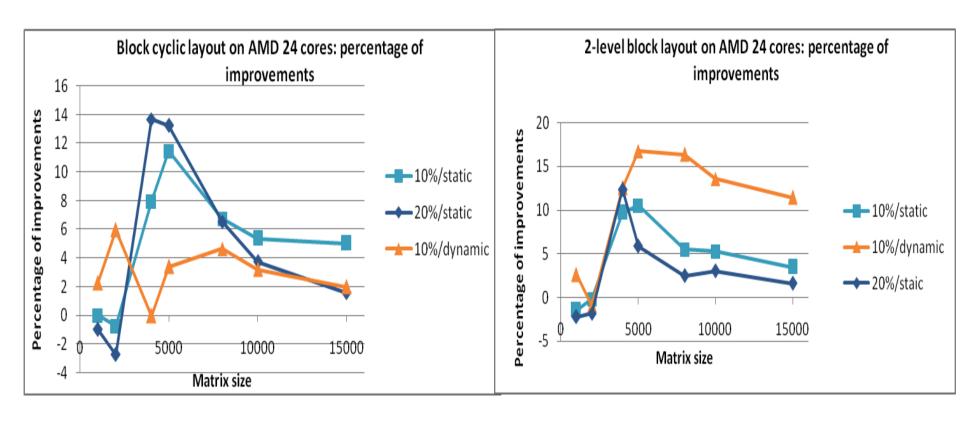


Two level block layout (2I-BL)



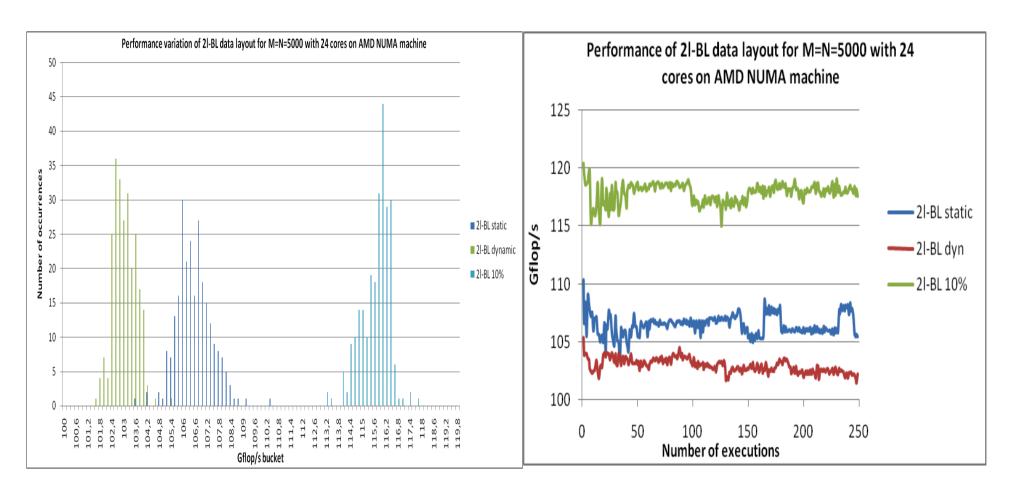
Four socket, twelve cores machine based on AMD Opteron processor (U. of Tennessee).

Improvement with respect to static and dynamic scheduling



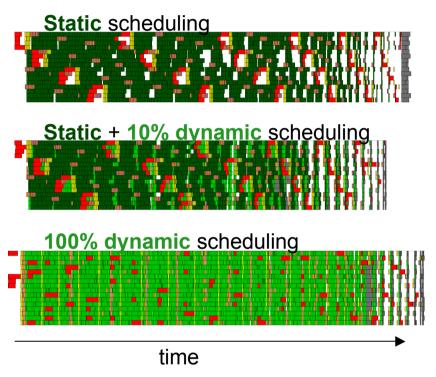
Four socket, twelve cores machine based on AMD Opteron processor (U. of Tennessee).

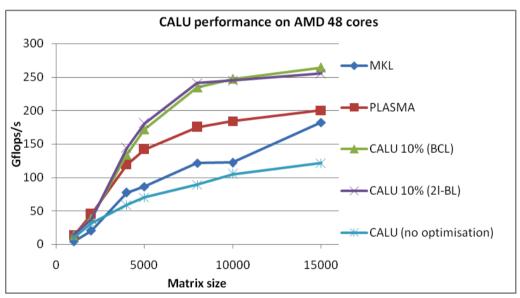
Performance variations for 250 runs



- Using 10% dynamic for our single node tests, we not only get high-performance, but also performance consistency
- Our solution addresses the noise amplification problem, where localized noise can amplify and create large bottlenecks at 10000+ nodes

Best performance of CALU on multicore architectures





- CALU 10% dynamic achieves up to 60% of the peak performance
- Reported performance for PLASMA uses LU with incremental pivoting

Performance model: first results

- Find the breakpoint at which static scheduling induces load imbalance
- Consider the parameters
 - f_s is the fraction of static scheduling
 - δ_i is the excess work on core i
 - δ_{total} is the sum of excess work across all cores
 - T_P is the time for computation to be done on P cores
- Assuming no overhead to the parallel time (eg communication), the static scheduling induces no load imbalance as long as

$$f_s \le 1 - \frac{\delta_{total}}{T_P}$$

Performance model: first results

$$f_s \le 1 - \frac{\delta_{total}}{T_P} \qquad \qquad f_d \ge \frac{\delta_{total}}{T_P}$$

- Given δ_{total} constant
 - For a given number of processor P and increasing matrix size, the static fraction can be increased, thus avoiding scheduling overhead
 - For strong scalability, the dynamic fraction needs to be increased
- Predictions of the amplification of noise at large scale suggests that the fraction of the dynamic part will be increasing

Conclusions

Highly efficient dense linear algebra routine

- Based on a tunable scheduling strategy
- Performance of CALU on 48 cores Opteron is as good as the performance reported in literature for the QR factorization (using complex reduction trees)

Future work

- Demonstrate the feasibility of the lightweight scheduling for other operations
- Develop a detailed theoretical analysis to guide the choice of the percentage dynamic in the scheduler
- Apply the theoretical analysis of lightweight scheduling time complexity to CALU, CAQR